
Using Git/Github
Barum Park (b.park@cornell.edu)
Department of Sociology
Cornell University

What is Git?

Git is a version control system that helps you keep track of your
code.

It’s widely used among software developers and scientists to
collaborate on projects.

1/38

How it Works

Source:
https://www.edureka.co/

Github is the server where you save
multiple repositories (“repo”s)

You can think of Github as a (potentially
shared) “dropbox” to store your code,
where repositories are folders/directories

You use Git to communicate with Github:
▶ After working on your code, you push

your changes to Github
▶ Other collaborates then pull your

changes into their local machines

2/38

How it Works

Git/Github makes sure that the entire history of all changes are
recorded

▶ You can always go back in time to any version of your repo

▶ No more, code.R, codeV1.R, codeFinal.R,
codeFinalV1.R, ...

▶ Your collaborators can see & comment on the changes you’ve
made

3/38

The Command Line

The Command Line
To use Git, you have to become familiar with the command line

▶ On MacOS, search for the terminal via + Space

followed by terminal
▶ On Windows, open Git Bash

You should see something like the following:

5/38

Basic Commands

Here is a list of basic commands that we’ll use:

1. pwd : this prints the path of the current directory

2. ls : lists files/directories in current directory
3. mkdir <path> : creates a directory in <path>

4. cd <path> : changes the directory to <path>

5. touch <filename> : creates a file named <filename>

Let’s try these out in order ...

6/38

Short Exercise: Getting Ready

Do the following in order:

1. Open your terminal
2. type pwd to check your location

3. type ls to see what files you have in the current directory
4. type mkdir git_tutorial to create a new directory

named git_tutorial
5. type ls to check that the directory was created
6. move into this directory by typing cd git_tutorial

7. type pwd to check that you are in the right directory

8. create a new file using touch myfile

9. type ls to check that the file was created

7/38

Short Exercise: Getting Ready

If everything was done successfully,

▶ You’d have created the directory $HOME/git_tutorial
▶ You are currently located in this directory
▶ The directory contains one file, namely myfile

Keep the terminal open (we’ll use it later on ...)

8/38

Setting up Git/Github

Overview

local
machine

remote
repoGit

Our goal for this section will be

1. Creating a remote repo on Github

2. Initializing Git on a local directory

3. Link our local git directoroy to the remote repo

10/38

Creating a Repo on Github

To create a repo on Github:

1. Go to https://github.com/ and log in to your account
2. Click on the button on the left (this will bring you to a

new window)
3. Enter the repository name as testrepo
4. Leave everything else as is

This will create a repo named testrepo on your Github!

You can think of this repo as an empty directory that we are going
to fill

Don’t close this window (we’ll need it later)

11/38

https://github.com/

Creating a local repo

After creating a (remote) repo on Github, there are two ways to link
a local repo (i.e., directory) to the remote repo

We can either
1. clone the remote repo into our local computer;
2. or use a directory that we have created and link it to the

remote repo

As we have already created a directory using the terminal, let us
consider the second method in this tutorial ...

12/38

Initializing

To link a local directory to the remote repo we’ve created, we need
to initialize a local git repo

In the terminal,
1. use pwd to check that you are in the directory that you want

to link
2. Then type git init to initizlize the git repository

3. Check with ls what has changed in the directory (you
should see only myfile in your directory)

It seems that nothing has changed, but when you type ls -a ,
you’ll see that a directory named .git was created.

If so, you’ve done everything correctly.

13/38

Linking

With this, your directory is a local Git repo (!)

It remains to link this local repo to the remote repo we’ve created
on Github

This can be done with

git remote add origin <remote address>

It remains to find out what the address of our remote repo is, alas.

When you return to the browser, you’ll see that the address of your
remote repo is stated there

(It should be https://github.com/<user-name>/testrepo.git)

14/38

Linking

So, what you should type into your terminal is

git remote add origin https://github.com/<user-name>/testrepo.git

with <user-name> substituted with your Github account name.

Here’s an explanation of the code:

▶ git remote add means that we want to link a remote
repo to the local repo

▶ origin is what we want to call the remote repo (we use
“origin” as the name, following convention)

▶ <address> is the address of the remote repo

With this our local repo and our remote repo are linked!

15/38

Add, Commit, Push, and Pull

Overview

Once our local and remote repos are linked, we are able to update
either of these with the other

Updating the remote repo based on the local repo is called
pushing

Updating the local repo based on the remote repo is called pulling

local remote

Push

Pull

17/38

From Local to Remote

There are three steps involved when we want to update the remote
based on the local repo

1. We need to let Git know what files to track (adding)

2. commit the change we make on the tracked files, after which

3. we push them upstream

18/38

Add, Commit, and Push
1. To tell Git to track a file, we use the git add command

In your terminal, you can make Git aware of the myfile by
typing git add myfile (A very useful shortcut to “add” all files
in the current directory is to type git add .)

2. Thereafter, we “commit” these changes by typing
git commit -m "start tracking myfile"

The -m "<text>" is required and intended to leave a short
note for every change we commit

3. Lastly, we push these changes to our remote repo with
git push origin main

where main is the “branch” to which we want to push (more
on this later)

19/38

Pulling

When you refresh your browser window, you’ll see that the
myfile file has appeared there.

When you click on the file, Github will show “nothing” (since the
file is empty)

1. Let’s edit this file a bit by clicking on the edit () button.
2. Write something into this file (e.g., “hello world”)
3. Click on “commit changes” at the bottom (keep “Commit

directly to the main branch” selected)
4. Check that your edits are reflect on the remote repo

20/38

Pulling

To incorporate these edits in your local repo as well, switch to the
terminal and type

git pull origin main

where git pull tells Git that we want to pull from the remote
and origin main means that we want to pull from the “main”
branch of the remote named “origin.”

When you open myfile, you’ll see that the empty file has now
some text in it!

21/38

Branching

Branching

You can think of a branch as a “version” of your git repo

By creating multiple branches, Git allows you to keep multiple
versions of your repository

The default branch on Git/Github is the main branch
(this is why we typed git push origin main)

It is a good idea to keep the default branch “stable”—i.e., you
should be always sure that your code on the main branch is
working without error

23/38

Workflow with Branching

The usual workflow with Git/Github is as follows:

1. You want to add stuff to your stable code on the main branch
2. Create a new branch, say we call it new
3. Work on the new branch by adding code
4. Create a pull request to merge the added changes in new

to main
5. After reviewing the pull request and check that everything

works, you merge new into main

24/38

On What Branch am I?
To check on which branch you are working, you can use

git status

When you type it now, you’ll see something like the following:

On branch main
nothing to commit, working tree clean

This tells you that you are working on the main branch

To create and switch to a new branch named test, we can us

git checkout -B test

where the -B option indicates that we want to create a new branch.

After running that command, check your branch with git status
again

25/38

Working on the Test Branch

Let us create a new file, this time with the echo and > command
line codes:

echo "working on the test branch" > myfile2

We can check that the file was created using the ls command. To
check the content of both myfile and myfile2 with the cat
command:

>>> ls
myfile myfile2
>>> cat myfile
hello world
>>> cat myfile2
working on the test branch

26/38

Pushing to a New Branch
As we have created something new, we add, commit, and push
these change

>>> git add .
>>> git commit -m "creating my second file"
>>> git push origin test

Notice that we are pushing to the test branch on the remote
origin (not main)

Since there is no test branch on the remote, Github will
automatically create it there

When you refresh your browser, you’ll see the message “ test had
recent pushes less than a minute ago,” which indicates that the
branch was created

You can check this also by clicking on the button
27/38

What Happened to the Main Branch?

The work we’ve done on the test branch leaves the main branch
(our default branch) unchanged

We can check that this is indeed the case

>>> git status
On branch test
nothing to commit, working tree clean
>>> ls
myfile myfile2
>>> git checkout main
Switched to branch ’main’
>>> ls
myfile

Notice that we’ve not used the -B option, since we don’t want to create a new
branch

28/38

Pull Requests

After we’ve checked that there is no errors in our new work (i.e.,
myfile2), we are ready to merge these changes into our stable
main branch

When we look into the browser, we see that a button
has appeared after our last push to the test branch.

Let’s click it, which will starts the process of creating a pull
request

29/38

Pull Requests

Github will immediately determine whether the two branches have
any conflicts. If there are none, it will tell you that these branches
are .

In the next slot, we can add some comments describing what
changes this pull request contains

In the last part of the window, Github compares the main and
test branch and will summarize

1. all commits that were made on the branch; and
2. all changes that were made to new or existing files

If we are happy with these changes (which we are!), we click on the
button to create the pull request

30/38

Merging

With this, the pull request is created.

When you are working alone on this repo, you can go on and
merge the pull request into the main branch.

When you are collaborating with others, you can ask your
collaborators to review the changes made in this pull request by
adding them via the “Reviewer” tab

The section at the bottom of the page is also useful for
collaborators/reviewers in order to ask you to make further
changes or raise issues

As we have no collaborators (/), let’s go ahead and merge the
branches by pusing on and then confirming the merge

31/38

Pulling Changes
While the two branches were merged on Github, these changes
have not yet been incorporated into our local repo. To do this we
need to pull from the remote.
First, we check whether there are any uncommited changes

>>> git status
On branch main
nothing to commit, working tree clean

Then, we pull from the main branch (as the test branch was
merged into main)

>>> git pull origin main
remote: Enumerating objects: 1, done.
...
Fast-forward
myfile2 | 1 +
1 file changed, 1 insertion(+)
create mode 100644 myfile2

32/38

Checking Changes

Lastly, we might check whether the changes were successfully
incorporated

>>> ls
myfile myfile2

We see that myfile2, which was on the test branch but not on
main before the merge, appeared on the main branch as well!

33/38

Wrapping Up

Summary

local remote

Add → Commit → Push

Pull

What we’ve discussed today was mainly about how to keep the
local and remote repositories in sync via pushing and pulling

We’ve discussed how to create branches as well

While these two functions of Git/Github are certainly imporant,
they are only the tip of the iceberg of what you can do with these
tools

35/38

Further Topics

Other topics of importance are

▶ Forking: copying other developers’ repos into your Github
(to contribute to them)

▶ Cloning: copying other developers’ repos into your local
machine

▶ Going back in time: How to revert your git repository to
a previous time point (in case somethiing goes wrong)

▶ Markdown: The typesetting language used throughout
Github, which is important to communicate with others

▶ Collaboration: How to collaborate on a git repository with
others, which includes raising issues, code reviews, etc.

36/38

Final words

Using Git/Github is great to streamline your workflow and to
collaborate with others on code

Regardless of whether you are collaborating or working alone,
keeping the following in mind will be helpful
▶ don’t forget to commit: commiting more is better than less
▶ when committing, use informative commit messages
▶ Always keep your default branch stable, most of the work is

done on separate branches
▶ Be patient ...

37/38

GOOD LUCK ,

