
Writing Good Code
A Bag of Tips
Barum Park (b.park@cornell.edu)
Cornell University

CPC Proseminar, 2025

Bad News. Unfortunately...I realize that most of you probably
use Stata

But most of my work uses other languages ...

So, today I’ll be talking about general tips rather than any
concrete code

But(!) at least for me, collection of tips were very helpful

And I wished someone had told me about them ...

1/35

What is a good code?

What is a good code?

I wish I knew... But we might agree on some criteria!

A good code should be ..

1. Working as intended / Replicable
2. Readable / Transparent
3. Efficient / Fast / Scale up to “large” data

For most social scientists, 1. to 3. would be roughly the order
of importance (I believe...)

So, let us discuss them in order (as long as time allows) ...

3/35

Working (as intended)

Working (as intended)

A good thing to remember in coding is that

If your code throws an error at you, it’s a good sign

You know that something is off, so you can fix it!

Far more worse are the errors that you don’t even know
about...

5/35

Working (as intended)

Here’s a mistake that people often make:

use "data.dta", clear // load data with vars x and y
gen z = (x > 10) // create dummy var z
reg y z, robust // run regression!

Problem here is: z will be 0 for rows in which x is missing

So, we are imputing (arbitrarily) the value 0 for cases, the
true value of which might be 1.

This is not Stata’s fault...It’s your fault

You should be understanding the default behavior of
Stata’s functions / commands (or any other programming
language that you are using)

6/35

Working (as intended)

Many similar coding errors happen all the time ...

For example, when creating the abortion (Rossi) scale using
the 2018 GSS, we might use the following R code :

vector of abortion item names
items_names = c("abdefect", "abnomore", "abhlth",

"abpoor", "abrape", "absingle")

for each resp., count no. of "yes" responses
rossi = rowSums(gss[, abort_items] == "yes", na.rm = T)

7/35

Working (as intended)

When we plot the rossi variable, we get

which shows how polarized the US is on this issue. But is it
really that polarized?

8/35

Working (as intended)

When “just” counting the number of “yes” responses, all
missing responses will be treated as “no” responses

In the 2018 GSS, a lot of respondents weren’t asked any of
the abortion questions at all

Their response pattern would look like

NA, NA, ..., NA

which contains zero "yes" responses.

For all these respondents, rossi would be equal to zero
(meaning “abortion shouldn’t be legal under any
circumstances”)

9/35

Working (as intended)

When dropping respondents whose ballot did not contain the
abortion questions, we get

which tells a very different story
10/35

Working (as intended)

But how can we make sure that we don’t make these mistakes?

There are basically three ways:

1. We give up on coding ...

2. We build in checks into our code

3. We hire RAs who build checks into their code

11/35

Testing

You might think “Of course, I’m checking my missing values.
Why do I need a separate code for this?”

▷ your code will change multiple times over a project

▷ you’d need to check for errors manually every time
something changes

▷ So, why not automatize it?

Here is a real-world example

12/35

https://github.com/baruuum/partisanship/tree/years

Modularizing

A good way to reduce errors in your code and to make your
code more manageable is to modularize it.

If your whole analysis is done in one .do, .R, or .py file,
you’re probably doing something wrong.

You should have at the very least two files

1. One code that takes the rawdata and creates datasets
that on which your models are run

2. One code that runs the analysis on the created data and
creates some output

This is the minimum...

By the way, never overwrite your raw data
13/35

Modularizing

But why does this help with avoiding errors?

▷ You can build checks/tests for each code

▷ Whenever your data/code changes, you only have to
check downstream codes

▷ Reviewing long code is tiring and error prone ...

14/35

Example Workflow

Raw
data

Proc.
data 2

Proc.
data 1

Proc.
data 3

Reg.
data 1

Reg.
data 2

Plot 1

Table
1

Plot 2

Code 1

Code 2

Code 3

Code 5

Code 4

15/35

Modularizing
Once you have one script for each module, you can write one
“main script” that will call each of the scripts in order to
execute the whole workflow

But there are better alternatives

▷ snakemake (Python, R, Stata, bash, etc.)

▷ targets (R)

In any case, you should have one “main” code that

1. calls all other codes in your workflow; and
2. reproduces all the results of your analysis (inc. numbers

mentioned in your text)

Here is a real-world example
16/35

https://github.com/baruuum/partisanship/tree/years

Modularizing

Another way to modularize your code:

write your own functions/packages for repeated tasks !

▷ Cut-and-pasting is quite an error-prone task

▷ Once you tested your function thoroughly, you won’t have
to worry about it

▷ Portability (You can use them in other projects as well!)

Example

17/35

https://github.com/baruuum/rwbtw

Package Versions

To make your analysis replicable by others, it is important to
keep information about the version of your packages/software

Source: https://julianreif.com/guide/#libraries

18/35

Package Versions
The lazy approach: Simply let others know what version
each package you have used.

In R, printing out the information provided by SessionInfo()
does this job (I am not sure about other languages)

Example

Better approach: Provide others with an replica of the
environment in which your code was run (virtural
environments, Docker, etc.)

If nothing works, you can always save the required
packages/add-ons into the project directory and ship it with
your replication package

Example
19/35

https://github.com/baruuum/Replication_Code/blob/master/2021_FB/replication_log.txt
https://github.com/baruuum/partisanship/blob/years/renv.lock

Using Other People’s Code

Most statistical software allow you to import user-written
functions (or commands) in the form of packages or macros.

How do you know which one to trust?

1. Check the user base (how many people are using it?)
2. Browse the source code (esp. testing)
3. Check whether the package is in active development

Examples of :

Package no longer in development
Package in active development

20/35

https://github.com/hadley/plyr
https://github.com/Rdatatable/data.table

Readability / Transparency

Readability / Transparency

Modularization helps a lot with readability, already.

So, let’s talk about how to make your code readable within
each specific code file.

22/35

Readability / Transparency

But first, why is readability important?

1. You’ll make less errors
2. You won’t be able to collaborate with others on a code if

your code is not readable (nor will others be able to
review your code)

3. You often want to reuse your old code; so you need to
understand what you did when you come back after
years...

4. You want to make your code public (always!) and help
others to use it and/or learn from it

23/35

Comments

The first rule is to write A LOT of comments
Tell readers (including yourself) what you are doing

This become extremely important when you collaborate with
others on the same code

Without comments, your code is often unintelligible to others
(including your future self)

Here is a bad example

24/35

https://github.com/baruuum/Replication_Code/blob/master/2018_HAWA/2-1_GRM_Fitting_%26_Checks.R

Coding Style

In general, it is a good idea to have a reasonable coding style
and stick to it (i.e,. be consistent)

What is ”reasonable”?

1. it should be easily readable
2. it should not be too far from the convention in your field

As with other points about readability, this becomes important
when you collaborate with others
So, it is often a good idea to have a ”style sheet” to which all
collaborators stick to

Here is a real-world example

25/35

https://github.com/letitbk/fb/wiki/coding-styles

Version Control

Use a version control system (e.g., Git)

If your code has names such as

regV1.R
regV2.R

...
regFinal.R

regFinalV1.R
...

regFinalFinalV1.R

you are not taking advantage of civilization

26/35

Version Control

What you want is

▷ work on only one file

▷ while saving the entire history of the file

▷ and being able to revert your file to any point in that
history

This is what version control systems help you to do (and there
are a lot of other benefits as well)

Here is a real-world example

27/35

https://github.com/baruuum/sbmob/blob/master/src/VEM.cpp

Efficiency

Efficiency

By “efficiency” we mean how fast your code gives you the
desired results

Efficiency is probably the least important aspect of coding for
most of you

If your data set is small (e.g., N < 1, 000, 000 and
K < 1, 000), it really doesn’t matter “how” you compute your
results, as long as you get the right answer

If you work with large(r) data, an efficient code can save you
days, weeks, or even months

29/35

Benchmarking

I think there are no “general” rules to make your code
efficient. Things will depend on the language you are using
(e.g., loops are efficient in C/C++ but slow in R or Python)

But, here are some tips:

1. Unless you know what you are doing, use the functions
that are provided by default or by well-known packages
(and try hard to find them before you write your own
functions!)

2. If you are not sure what function to use, benchmark your
functions (example)

30/35

https://baruuum.github.io/igplot/

Scaling Up

To scale up your code to large(r) datasets

1. Parallelize independent parts of your

2. If you have a modularized workflow, think about whether
some codes can be run independently
(programs such as snakemake will do this for you automatically
and can be used with R, python, Stata, etc.)

3. Then, run your code on a HPC cluster.

31/35

Example Workflow (Again)

Raw
data

Proc.
data 2

Proc.
data 1

Proc.
data 3

Reg.
data 1

Reg.
data 2

Plot 1

Table
1

Plot 2

Code 1

Code 2

Code 3

Code 5

Code 4

32/35

HPC

If you plan to work on complicated projects, it pays off to learn
how to interact with high-performance computing clusters
(HPCs).

You don’t want to face a situation like this:

when there are other ways around ...
33/35

HPC

To use these clusters:

▷ you’ll have to become familiar with the command line,
since most of them run on Linux

▷ Using version control systems (Git/Github) makes things
much easier as well

It really pays off to become familiar with these tools

34/35

Thank you!

Barum Park
b.park@cornell.edu

35/35

