
Networks in Context Lab, 2024

Very Short Introduction to Bayesian
Statistics

Barum Park
Department of Sociology

Cornell University

March 15, 2024

1/45

Outline

Very short introduction to Bayesian statistics using Stan

1. Very short introduction to difference between Bayesian
and Frequentist approaches

2. Very short introduction to benefits of Bayesian
approach

3. Very short introduction to using Stan’s No-U-Turn
sampler to obtain samples from posterior distribution

1/45

What is Bayesian Statistics?

Parametric models describe the probability of some data y
as a function of a parameter θ (and possibly some other
data, x):

y ∼ f(θ, x)

For example, in linear
regression, we assume

yi ∼ Normal(xiβ, σε)

where θ = {β, σε}.

The objective of the
analysis to estimate θ or
some function of it

X Y

D
ensity

2/45

In Frequentist or MLE approaches, inference centers
around some point estimate of θ. For example

1. What is the most likely value of θ that generated the data?
(MLE)

2. Assume H0 : θ = 0 what would be the distribution of g(y)? Does
the observed value of g(y) look like it came from that
distribution? (NHST)

The basic assumption is that θ is some unknown fixed
quantity
(We often talk about the “true” θ that generated the data. Talking
about p(θ) or p(H0) doesn’t make sense.)

The only thing that is random are the data, where
randomness arises due to some sampling process.

3/45

The Bayesian approach assumes that θ is a random
variable itself—hence, it has a distribution.

So, it does make sense to talk about p(θ) or p(H0)

The analysis centers around updating the distribution of θ
based on newly observed data.

1. we have some prior belief about θ, represented as a
distribution
(Note: this belief might be “we have no idea at all”)

2. We observe some data
3. We obtain a new distribution of θ by updating our

beliefs based on the data
(Of course, we might be interested in some statistic of this
distribution, such as the mean or median...)

4/45

Updating is done via Bayes Rule. Glossing over technical
details, recall for random variables v and w, we have

p(v |w) = p(v and w)
p(w) = p(w | v)p(v)

p(w)

So, let v = θ and w = y, which gives the updating formula

p(θ | y) = p(y | θ)p(θ)
p(y)

5/45

p(θ | y) = p(y | θ)p(θ)
p(y)

Notice that
1. p(θ | y) is the probability of θ after observing the

data—i.e., the posterior distribution

2. p(y | θ) is the probability of observing the data given a
particular value of θ—i.e., likelihood of the data

3. p(θ) is the probability of θ before observing the
data—i.e, the prior distribution of θ

4. p(y) =
∫

Θ p(y | θ)p(θ)dθ is a constant that doesn’t
depend on θ and is often not of theoretical interest

6/45

So, we often write

p(θ | y) ∝ p(y | θ)p(θ)

i.e., “the posterior is proportional to the likelihood times
the prior”

7/45

Once we have p(θ | y), it’s easy to make any kind of
inference regarding θ.

When we are interested in a point estimate, we can use the
maximum a posteriori (MAP) estimate:

MAP(θ) = arg max
θ∈Θ

p(y | θ)p(θ)

(other possiblities are the posterior mean, posterior median, etc...)

Comparing this to the maximum likelihood estimate(MLE)

MLE(θ) = arg max
θ∈Θ

p(y | θ)

we see that the only difference is the prior.

Further, the likelihood will dominate the prior as n grows
large. So, in large samples, the MAP will approach the
MLE

8/45

A similar logic applies to other models as well:

θprior

0.0 0.2 0.4 0.6 0.8 1.0

Set of Priors

θposterior

0.0 0.2 0.4 0.6 0.8 1.0

Corresponding Posteriors

(n = 500)

(Notes: Beta-Binomial model with n = 500 observations and MLE(θ) = .2)

So, why bothering to use Bayesian analysis at all?

9/45

Why You Should Be a Bayesian?

There are multiple arguments for using Bayesian statistics.
Among others:

1. It’s more intuitive
(95% confidence vs credible intervals...)

2. Once you get the posterior, you can make valid
inference about any function of θ
(e.g., What is p(β1/β2 ≤ β3 | y)?)

3. It works better for “weakly” or non-identified models
e.g., “Hessian is not positive definite” situations, perfect
separation in logistic regression

4. It’s a natural way to regualize inference

Let’s discuss 4. a bit more in detail...
10/45

How does the prior regularize inference?

To get some intuition, it’s quite informative to compare the
MAP with the MLE.

In linear regression with normal likelihood,

1. Normal prior:
MAP(θ) = Ridge(θ) (i.e., L2 regularization)

2. Double-Exponential or Laplace prior:
MAP(θ) = LASSO(θ) (L1 regularization)

But you get more than just a point estimate: the whole
posterior distribution

11/45

You can think of the prior as adding some (pseudo-)
observations to your dataset, where they make sense

. If your dataset is large, these added observations will
have no effect on your inference (likelihood dominates!)

. But if your dataset is small, they make sure that your
estimate is not too far off from a reasonable value

So, you introduce a bit of a bias with the prior in exchange
for reduce variance of your inference

12/45

Does this mean that Bayesian approaches give you nothing
in large datasets?

. Even in large datasets, you’ll often find niches (so to
say) in covariate space with little data

. The prior will regularize inference on those niches,
while not influencing much the inference in other
regards

. This is why random effects models (RE) perform
better in prediction tasks than fixed-effect models (FE)
(REs can be understood as FEs with a prior on the group-level
intercepts; conversely, FEs can be understood as REs with
infinite-variance priors)

13/45

Bayesian Inference in Practice (a.k.a.
MCMC)

In Bayesian statistics, we want to make inference based on
p(θ | y)

But how do we do this in practice?

1. If cases where p(θ | y) can be calculated analytically, we
are done

2. In cases where we cannot calculate the posterior
analytically, but can sample directly from the posterior,
we can approximate p(θ | y) using Monte Carlo

3. In cases we cannot calculate p(θ | y) directly nor
sample directly from it (most of the time), there are
still ways approximate it (MCMC, HMC, VB, etc.)

In this (very) short introduction, we’ll focus on Stan, which
implements an HMC algorithm (called the No-U-turn
sampler)

14/45

So, what is Hamiltonian Monte Carlo (HMC)?

It’s an efficient Markov Chain Monte Carlo (MCMC)
method

But what is MCMC?

Recall that we are in a situatuon cannot sample directly
from p(θ | y) /

It turns out that it’s somtime possible to define a Markov
Chain on Θ that has p(θ | y) as it’s unique limiting
distribution ,

So, starting from θ(0), we might let θ(s) evolve according to
the Markov Process until some large S and take {θ(s)}s>S
as samples from p(θ | y). This is MCMC

15/45

0 100 200 300 400 500

−
6

−
4

−
2

0
2

4
6

theta[1]

0 100 200 300 400 500

−
6

−
4

−
2

0
2

4
6

theta[2]

First 100 Draws

theta[1]

th
et

a[
2]

−4 −2 0 2 4

−
3

−
2

−
1

0
1

2
3

4

Last 100 Draws

theta[1]

th
et

a[
2]

−4 −2 0 2 4

−
3

−
2

−
1

0
1

2
3

4

16/45

Pause...Questions so far?

17/45

Bayesian Models in Stan

The sampler implemented in Stan, called the No-U-Turn
sampler, is, again, an improvement on basic HMC. But we
won’t dwell on the details here.

Instead, let’s focus on how to get Stan to work!

In a nutshell,
1. We specify the (log) posterior distribution up to a

constant (i.e., we specify prior and likelihood)
2. Stan creates posterior samples for us
3. We make inference based on these samples

Simple and Beautiful!

18/45

Here are some example data that we are going to analyze

> data = read.csv(here("example", "data.csv")) # data.frame object
> head(data)

y date topic
1 0.8346688 1 1
2 0.9251793 2 1
3 0.8998521 3 1
4 0.9033230 4 1
5 0.9124415 5 1
6 0.8928756 6 1
> data$topic |> unique() |> length()
[1] 40
> data$date |> unique() |> length()
[1] 20

. y: A measure of ideological separability of comment
threads ensuing a post

. date: the date of the post

. topic: topic of the post

19/45

We’ll consider two models: simple linear regression and a
multilevel model

The simple linear regression might be formulated as

yit = α + βxit + εit, εit
iid∼ N(0, σ2

ε)

where i denotes the topic and t the date of the data entry.

Notice
1. We don’t model heterogenity across topics—i.e., we

pool across all topics
2. the parameters of interest are θ = {α, β, σε}
3. Assign priors to the parmeters:
α, β ∼ N(0, 1), σε ∼ Exp(1)

20/45

In the multilevel (random intercept) model, we assume that

1. Each topic has it’s own intercept

5 10 15 20

0.
6

0.
7

0.
8

0.
9

1.
0

Simple Linear Regression

Date (jittered)

A
U

C

5 10 15 20
0.

6
0.

7
0.

8
0.

9
1.

0

Random Intercept Model

Date (jittered)

A
U

C

2. The intercepts come from the same distribution (e.g.,
Normal distribution, but not necessarily Normal...)

21/45

Formally, we write

yit = αi+βxit + εit, εit
iid∼ N(0, σ2

ε)

αi
iid∼ N(µα, σ2

α)

Notice αiiid∼ N(µα, σ2
α) is just assigning a prior to the

random intercepts

Now we have θ = {β, σε, α1, ..., αK , µα, σα}

Model is completed by assigning priors
1. Recall αi’s prior are already specified
2. Add β ∼ N(0, 1) and σε ∼ Exp(1) as before
3. New stuff: µα ∼ N(0, 1) and σα ∼ Exp(1)

Done!

22/45

Fitting Bayesian Models in R using brms

Fitting Bayesian regression models is extremely easy using
the brms (or rstanarm) package

The syntax is basically the same as the base::glm or
lme4::lmer functions

For the simple linear regression model:
slr_brms = brms::brm(

formula = y ˜ date, data = data, family = gaussian(),
warmup = 500, iter = 1500, refresh = 1000, chains = 4,
cores = 4, seed = 123

)

will do the job for us: creating the appropriate Stan code,
and compile it in C++, and run the sampler

23/45

> slr_brms = brms::brm(...)
> print(slr_brms, digits = 4)
Population-Level Effects:

Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
Intercept 0.8300 0.0053 0.8195 0.8402 1.0010 3728 3137
date 0.0016 0.0004 0.0007 0.0025 1.0020 4686 3137

Family Specific Parameters:
Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS

sigma 0.0720 0.0019 0.0683 0.0758 1.0049 861 978

But what about the priors?
> prior_summary(slr_brms)

prior class coef group resp dpar nlpar lb ub source
(flat) b default
(flat) b date (vectorized)

student_t(3, 0.9, 2.5) Intercept default
student_t(3, 0, 2.5) sigma 0 default

24/45

Setting custom priors is easy as well:

slr_brms_w_prior = brms::brm(
formula = y ˜ date,
data = data,
family = gaussian(),
prior = c(

set_prior("normal(0, 1)", class = "Intercept"),
set_prior("normal(0, 1)", class = "b", coef = "date"),
set_prior("exponential(1)", class = "sigma")

),
warmup = 500,
iter = 1500,
refresh = 1000,
chains = 4,
cores = 4,
seed = 123

)

25/45

Notice that the results are almost identical:

> print(slr_brms_w_prior, digits = 4)
Family: gaussian
Links: mu = identity; sigma = identity

Formula: y ˜ date
Data: data (Number of observations: 800)

Draws: 4 chains, each with iter = 1500; warmup = 500; thin = 1;
total post-warmup draws = 4000

Population-Level Effects:
Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS

Intercept 0.8298 0.0054 0.8196 0.8407 1.0009 3906 2517
date 0.0016 0.0005 0.0007 0.0025 1.0023 4510 2545

Family Specific Parameters:
Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS

sigma 0.0719 0.0018 0.0684 0.0756 1.0051 789 999

Draws were sampled using sampling(NUTS). For each parameter, Bulk_ESS
and Tail_ESS are effective sample size measures, and Rhat is the potential
scale reduction factor on split chains (at convergence, Rhat = 1).

And we have the priors we want:
> prior_summary(slr_brms_w_prior)

prior class coef group resp dpar nlpar lb ub source
(flat) b default

normal(0, 1) b date user
normal(0, 1) Intercept user

exponential(1) sigma 0 user

26/45

Easy to check the trace- and
density-plots using the plot
method

> plot(slr_brms_w_prior)

sigma

b_date

b_Intercept

0.070 0.075

0.000 0.001 0.002 0.003

0.82 0.83 0.84
0

20

40

60

0

200

400

600

800

0

50

100

150

200

sigma

b_date

b_Intercept

0 200 400 600 800 1000

0 200 400 600 800 1000

0 200 400 600 800 1000
0.81

0.82

0.83

0.84

0.85

0.000

0.001

0.002

0.003

0.070

0.075

Chain

1
2
3
4

Or look into the conditional
predictions with their
credible intervals

> conditional_effects(
slr_brms_w_prior,
effect = "date"

)

0.82

0.83

0.84

0.85

0.86

0.87

5 10 15 20
date

y

27/45

Fitting multilevel models are equally easy. We use the same
formula syntax as lme4:

mlm_brms_w_prior = brms::brm(
formula = y ˜ date + (1 | topic), data = data,
prior = c(

set_prior("normal(0, 1)", class = "Intercept"),
set_prior("normal(0, 1)", class = "b", coef = "date"),
set_prior("exponential(1)", class = "sigma"),
set_prior("exponential(1)", class = "sd")

),
family = gaussian(), warmup = 1000, iter = 2000, refresh = 1000,
chains = 4, cores = 4, seed = 123

)

> print(mlm_brms_w_prior, digits = 4)
Group-Level Effects:
˜topic (Number of levels: 40)

Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
sd(Intercept) 0.0541 0.0066 0.0429 0.0690 1.0152 339 828

Population-Level Effects:
Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS

Intercept 0.8297 0.0099 0.8098 0.8497 1.0135 161 417
date 0.0016 0.0003 0.0010 0.0022 1.0002 3812 2746

Family Specific Parameters:
Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS

sigma 0.0502 0.0013 0.0479 0.0528 1.0024 3328 2852

28/45

It’s also possible to extract the posterior draws directly:
> psamples = as_draws(mlm_brms_w_prior) # note: Extract draws

> class(psamples) # note: this is basically a ‘list‘ object
[1] "draws_list" "draws" "list"

> length(psamples) # note: length is equal to the number of chains
[1] 4

> class(psamples[[1]]) # note: each element is again a ‘list’
[1] "list"

> names(psamples[[1]]) # note: which contains all the parameters
[1] "b_Intercept" "b_date" "sd_topic__Intercept"
[4] "sigma" "r_topic[1,Intercept]" "r_topic[2,Intercept]"
...
[43] "r_topic[39,Intercept]" "r_topic[40,Intercept]" "lprior"
[46] "lp__"

> psamples[[1]][["b_date"]] # note: this would extract the samples
of the regression coefficient from
the first chain

[1] 0.0017325622 0.0012639667 0.0018935499 ...
[6] 0.0016589144 0.0020239859 0.0011239522 ...
...

[991] 0.0014328793 0.0009396389 0.0021512139 ...
[996] 0.0018722834 0.0016737117 0.0018758484 ...

29/45

Fitting Bayesian Models in R using
cmdstanr

While brms and rstanarm are great packages, sometimes
we need to code directly in Stan

This happens most often when you are trying to fit a
“non-standard” model

There are two packages that let you directly interact with
the Stan language from R: rstan and cmdstanr

30/45

A Stan program consists of 7 code
blocks:

1. functions{}

2. data{}

3. transformed data{}

4. parameters{}

5. transformed parameters{}

6. model{}

7. generated quantities{}

So, a typical Stan program will
look like:

functions {

<some user-defined functions here>

}

data {

<data specifications here>

}

...

model {

<model definition here>

}

generated quantities {

<calculate some extra stuff here>

}

We will not deal with 1., 3. and 7. today

31/45

Let’s return to the simple linear regression model:
yi = α + βxi + ε, σε Normal(0, σε)

or equivalently
yi ∼ Normal(α + βxi, σε)

The data consists of two vectors:
1. the outcome y = [y1, ..., yi, ..., yN]>; and
2. the predictor x = [x1, ..., xi, ..., xN]>

We specify this in the data data{} block.

data {

int N; // no. of obs.
vector[N] x; // predictor
vector[N] y; // outcome

}

32/45

The only parameters in the model are

1. α ∈ R: the intercept
2. β ∈ R: the slope coefficient
3. σε ∈ R+, the residual standard deviation.

We can declare them in the parameters{} block:

parameters {

real alpha;
real beta;
real<lower = 0> sigma_epsilon;

}

Notice that we specified real<lower = 0> to indicate that
σε has to be positive

33/45

Lastly, we specify the (log) posterior density (up to a
constant.)This is equivalent to specifying the likelihood and
the prior

Let us use the following weakly informative priors

α ∼ Normal(0, 2)
β ∼ Normal(0, 1)
σε ∼ Exponential(1)

34/45

As for the likelihood, notice that the model

yi = α + xiβ + εi

implies that
yi ∼ Normal(α + βxi, σε)

Hence, the likelihood is

p(y |α, β, σε) =
N∏
i=1

Normal(α + βxi, σε)

=
N∏
i=1

Normal(ŷi, σε),

where ŷi = α + βxi.

35/45

We code this up in the model block as follows:
model {

// linear predictor (local variable)
vector[N] yhat;

for (n in 1:N)
yhat[n] = alpha + beta * x[n];

// priors
alpha ˜ normal(0, 2);
beta ˜ normal(0, 1);
sigma_epsilon ˜ exponential(1);

// vectorized likelihood
y ˜ normal(yhat, sigma_epsilon);

}

36/45

So, in sum, the Stan code will look like
data {

int N; // no. of obs.
vector[N] x; // predictor
vector[N] y; // outcome

}

parameters {

real alpha;
real beta;
real<lower = 0> sigma_epsilon;

}

model {

// linear predictor (local variable)
vector[N] yhat;

...

y ˜ normal(yhat, sigma_epsilon);

}

37/45

Suppose that this file is saved in a file named slr.stan

From within R, we can compile the code with the cmdstanr
package as follows:

> library("cmdstanr")
> mod = cmdstan_model("slr.stan")

After compiling the model, we need to provide it with data
to generate posterior samples. Usually, you provide the
data as a list object:

> standata = list(
N = nrow(dat),
x = dat$date,
y = dat$y

)

38/45

Sampling is then done by providing the cmdstanr object
with the data and options:

fit = mod$sample(
data = standata,
chains = 4,
parallel_chains = 4,
iter_warmup = 1000,
iter_sampling = 1000,
refresh = 1000

)

We can, thereafter, get summaries and extract the posterior
samples with

> fit$summary()
A tibble: 4 × 10
variable mean median sd mad q5 q95 rhat ess_bulk
<chr> <num> <num> <num> <num> <num> <num> <num> <num>
1 lp__ 1.70e+3 1.70e+3 1.24e+0 1.01e+0 1.70e+3 1.71e+3 1.00 1283.
2 alpha 8.30e-1 8.30e-1 5.34e-3 5.29e-3 8.21e-1 8.39e-1 1.00 1533.
3 beta 1.59e-3 1.59e-3 4.45e-4 4.37e-4 8.54e-4 2.32e-3 1.00 1779.
4 sigma_epsilon 7.19e-2 7.19e-2 1.80e-3 1.77e-3 6.90e-2 7.49e-2 1.00 1377.
> psamples2 = fit$draws()

which returns, as before, a draws object.
39/45

One nice thing about the cmdstanr package is that all
cutting-edge Stan algorithms are available

For example:
Auto-diff variational Bayes
vb = mod$variational(data = standata)

penalized MLE (L-BFGS)
pmle = = mod$optimize(data = standata)

pathfinder approximation
pfinder = mod$pathfinder(data = standata)

laplace approximation
laplace = mod$laplace(data = standata)

40/45

The Stan program for the random intercept model is a bit more
complicated

We start with the data-structure we need to provide Stan

standat_mlm = list(
N = nrow(dat), # total obs.
J = length(unique(dat$topic)) # no of topics
topic = dat$topic,
x = dat$date,
y = dat$y

)

Similarly, the data{} block in our Stan code is expanded:

data {

int N; // no. of obs.
int J; // no. of topics.
array[N] int topic; // topic indicator
vector[N] x; // predictor
vector[N] y; // outcome

}

The array[N] int object is an array (vector) of integers (you can
think of it as std::vector<int> and vector[N] as
Eigen::VectorXd)

41/45

The parameter block would need 3 new elements:
1. The mean of the random intercepts, µα
2. The standard deviation of the random intercepts, σα
3. A length-J vector of random intercepts, [α1, ..., αJ]>

Here it becomes complicated...While we can simply
“sample” αi ∼ N(µα, σα), Stan works much better when
sampling from N(0, 1).

So, we’ll use the “Matt trick” and sample αraw
i ∼ N(0, 1),

and calculate
αi = µα + σα ∗ αraw

i ,

which induces
αi ∼ N(µα, σα)

This will make us use the transformed parameter block...

42/45

Hence, the Stan code looks like:
parameters {

// regression coef
real beta;
// resid std. dev.
real<lower = 0> sigma_epsilon;

// grand mean of random intercepts
real mu_alpha;
// std. dev. of random intercepts
real<lower = 0> sigma_alpha;
// aux var for efficient samping
vector[J] alpha_raw;

}

transformed parameters {

// random intercepts
// note: alpha ˜ Normal(mu_alpha, sigma_alphaˆ2)
vector[J] alpha = alpha_raw * sigma_alpha + mu_alpha;

}

43/45

The model block remains almost the same:
model {

// linear predictor (local variable)
vector[N] yhat;

for (n in 1:N)
yhat[n] = alpha[topic[n]] + beta * x[n];

// priors
beta ˜ normal(0, 1);
sigma_epsilon ˜ exponential(1);

mu_alpha ˜ normal(0, 2);
sigma_alpha ˜ exponential(1);
alpha_raw ˜ normal(0, 1);

// vectorized likelihood
y ˜ normal(yhat, sigma_epsilon);

}

44/45

Assuming the Stan code is stored in the file re.stan, we
can compile and obtain posterior draws as before.

This time, let’s try out the Pathfinder algorithm
> mlm = cmdstan_model(here("example", "re.stan"))
> pf = mlm$pathfinder(data = standata_mlm)
> pf$print(digits = 5)

variable mean median sd mad q5 q95
lp_approx__ 21.43907 21.54090 6.61650 5.20230 4.55942 32.03380
lp__ 1195.49274 1197.07000 6.14990 5.12980 1179.50000 1204.89250
beta 0.00150 0.00150 0.00042 0.00047 0.00084 0.00214
sigma_epsilon 0.04941 0.04940 0.00109 0.00087 0.04750 0.05133
mu_alpha 0.83045 0.83125 0.00349 0.00226 0.82258 0.83693
sigma_alpha 0.05272 0.04976 0.00686 0.00390 0.04561 0.06513
alpha[1] 0.89406 0.89628 0.00915 0.00861 0.87887 0.90943
alpha[2] 0.83116 0.83402 0.01069 0.01407 0.81564 0.84480
...
alpha[39] 0.90629 0.90522 0.01037 0.01258 0.88813 0.91947
alpha[40] 0.87823 0.87935 0.00962 0.00686 0.85935 0.89172

These results are very close to the (gold-standard) HMC
results!
(As before, we could anlayze the results further using mlm$draws() to
obtain the posterior darws)

45/45

