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Modularity



 

Modularity: Two Definitions

 

You’ll find two equivalent definitions of the modularity in the 

literature: 

1. One that looks like this (Newman and Grivan 2004):

 Q = \sum _{k = 1}^K (e_{kk} - e_k^2) 













 

where

 

▷

 

K is the number of modules ,

 

▷

 

ekk 

is the proportion of edges connecting nodes within 

module k ,

 

▷

 

ek 

is the marginal proportion of edges that have at least 

one end node in module k .
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Modularity: Two Definitions

 

You’ll find two equivalent definitions of the modularity in the 

literature: 

1. The other definition looks like this (Blondel et al. 2008):

 Q = \frac {1}{2m}\sum _{i = 1}^n\sum _{j=1}^n \left (a_{ij} - \frac {d_{i}d_{j}}{2m}\right )\delta (c_i, c_j) 



































 

where

 

▷

 

m is the number of edges,

 

▷

 

aij 

is the ( i , j ) th element of the adjacency matrix,

 

▷

 

di 

is the degree of node i ,

 

▷

 

ci 

is an indicator of the module to which node i belongs

 

▷

 

δ is the Kronecker delta function.
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Consider the following graph

 

v4

 

v3

 

v1

 

v2

 

v5

 

with adjacency matrix

 \mb A = \begin {bNiceMatrix}[first-row, first-col] & v_1 & v_2 & v_3 & v_4 & v_5 \\ v_1 & 0 & 1 & 1 & 0 & 0 \\ v_2 & 1 & 0 & 1 & 0 & 1 \\ v_3 & 1 & 1 & 0 & 1 & 0 \\ v_4 & 0 & 0 & 1 & 0 & 1 \\ v_5 & 0 & 1 & 0 & 1 & 0 \end {bNiceMatrix}
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Suppose we cluster this graph in to the following partition:

 

v4

 

v3

 

v1

 

v2

 

v5

 

with adjacency matrix

 \mb A = \begin {bNiceMatrix}[first-row, first-col] & v_1 & v_2 & v_3 & v_4 & v_5 \\ v_1 & \color {darkmagenta}{0} & \color {darkmagenta}{1} & \color {darkmagenta}{1} & \color {gray}{0} & \color {gray}{0} \\ v_2 & \color {darkmagenta}{1} & \color {darkmagenta}{0} & \color {darkmagenta}{1} & \color {gray}{0} & \color {gray}{1} \\ v_3 & \color {darkmagenta}{1} & \color {darkmagenta}{1} & \color {darkmagenta}{0} & \color {gray}{1} & \color {gray}{0} \\ v_4 & \color {gray}{0} & \color {gray}{0} & \color {gray}{1} & \color {darkcyan}{0} & \color {darkcyan}{1} \\ v_5 & \color {gray}{0} & \color {gray}{1} & \color {gray}{0} & \color {darkcyan}{1} & \color {darkcyan}{0} \end {bNiceMatrix}



















































































































































 

4/31



 

From

 \mb A = \begin {bNiceMatrix}[first-row, first-col] & v_1 & v_2 & v_3 & v_4 & v_5 \\ v_1 & \color {darkmagenta}{0} & \color {darkmagenta}{1} & \color {darkmagenta}{1} & \color {gray}{0} & \color {gray}{0} \\ v_2 & \color {darkmagenta}{1} & \color {darkmagenta}{0} & \color {darkmagenta}{1} & \color {gray}{0} & \color {gray}{1} \\ v_3 & \color {darkmagenta}{1} & \color {darkmagenta}{1} & \color {darkmagenta}{0} & \color {gray}{1} & \color {gray}{0} \\ v_4 & \color {gray}{0} & \color {gray}{0} & \color {gray}{1} & \color {darkcyan}{0} & \color {darkcyan}{1} \\ v_5 & \color {gray}{0} & \color {gray}{1} & \color {gray}{0} & \color {darkcyan}{1} & \color {darkcyan}{0} \end {bNiceMatrix}





















































































































































 

We can create a new matrix that contains the within- and 

between-module sum of ties

 \mb B = \begin {bNiceMatrix}[first-row, first-col] & \color {darkmagenta}{C_1} & \color {darkcyan}{C_2} \\ \color {darkmagenta}{C_1} & \color {darkmagenta}{6} & \color {gray}{2} \\ \color {darkcyan}{C_2} & \color {gray}{2} & \color {darkcyan}{2} \end {bNiceMatrix}









































 

Large numbers in the diagonals of this matrix mean that most 

ties connect nodes of the same module (strong clustering)
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 \mb B = \begin {bNiceMatrix}[first-row, first-col] & \color {darkmagenta}{C_1} & \color {darkcyan}{C_2} \\ \color {darkmagenta}{C_1} & \color {darkmagenta}{6} & \color {gray}{2} \\ \color {darkcyan}{C_2} & \color {gray}{2} & \color {darkcyan}{2} \end {bNiceMatrix}









































 

Problem I : the numbers in the diagonal depend on the 

density of the network. 

So, we divide each element of B by 2 m , where m = 6 is the 

number of edges in the network (why 2 m and not m ?).

 \mb E = \begin {bNiceMatrix}[first-row, first-col] & \color {darkmagenta}{C_1} & \color {darkcyan}{C_2} \\ \color {darkmagenta}{C_1} & \color {darkmagenta}{\frac {6}{12}} & \color {gray}{\frac {2}{12}} \\ \color {darkcyan}{C_2} & \color {gray}{\frac {2}{12}} & \color {darkcyan}{\frac {2}{12}} \end {bNiceMatrix}

























































 

The closer the sum over the diagonals to 1, the stronger would 

be the clustering.
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The closer the sum over the diagonals to 1, the stronger would 

be the clustering.

 

6/31
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Problem II : we could always throw all nodes into one module 

and get a diagonal sum of 1. 

The matrix E would have only one cell which is the diagonal 

(and equal to 1).

 

So, we need a null model to which we can to compare the 

clustering strength (i.e., switch to relative strength).
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(and equal to 1).
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 \mb E = \begin {bNiceMatrix}[first-row, first-col, last-col] & \color {darkmagenta}{C_1} & \color {darkcyan}{C_2} & \\ \color {darkmagenta}{C_1} & \color {darkmagenta}{\frac {6}{12}} & \frac {2}{12} & \color {darkmagenta}{\frac {2}{3}} \\ \color {darkcyan}{C_2} & \frac {2}{12}& \color {darkcyan}{\frac {2}{12}} & \color {darkcyan}{\frac {1}{3}} \end {bNiceMatrix}









































































 

Notice that the sum of the k th row of E gives us the 

proportion of edges that have at least one end-point in cluster 

k . 

Denote this proportion as ek . 

If we would place the edges in the network at random, under 

the constraint that the resulting module sizes remain fixed, the 

expected proportion of ties in the ( k , l ) th cell of E would be 

ek 

× el .
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So the observed and expected between-module tie-matrix 

looks like:

 \mb E = \begin {bNiceMatrix}[first-row, first-col, last-col] & \color {darkmagenta}{C_1} & \color {darkcyan}{C_2} & \\ \color {darkmagenta}{C_1} & \color {darkmagenta}{\frac {6}{12}} & \frac {2}{12} & \color {darkmagenta}{\frac {2}{3}} \\ \color {darkcyan}{C_2} & \frac {2}{12}& \color {darkcyan}{\frac {2}{12}} & \color {darkcyan}{\frac {1}{3}} \end {bNiceMatrix}









































































 \mbb E[\mb E] = \begin {bNiceMatrix}[first-row, first-col, last-col] & \color {darkmagenta}{C_1} & \color {darkcyan}{C_2} & \\ \color {darkmagenta}{C_1} & \color {darkmagenta}{\frac {4}{9}} & \frac {2}{9} & \color {darkmagenta}{\frac {2}{3}} \\ \color {darkcyan}{C_2} & \frac {2}{9}& \color {darkcyan}{\frac {1}{9}} & \color {darkcyan}{\frac {1}{3}} \end {bNiceMatrix}









































































 

The modularity is simply the sum of the diagonal elements of 

E − E [ E ] , i.e.,

 Q = \text {Trace}(\mb E - \mbb E[\mb E]) = \sum _{k=1}^K(e_{kk} - e_k^2),

    











 

where ekk 

is the k th diagonal element and ek 

is the k th 

row-sum of the matrix E .
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Modularity Maximization

 

Newman and Grivan (2004) use a divisive algorithm to find a 

partition that maximizes Q 

Blondel et al. (2008) use a multi-level agglomerative algorithm 

to find partitions that maximize Q 

Traag et al. (2019) show that the algorithm by Blondel is 

flawed and suggest an efficient alternative
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Implications

 

1. The modularity shows how “good” a clustering is, where 

“good” means better than a scenario where

 

▷

 

ties are placed at random between the nodes of the 

network

 

▷

 

given the constraint that the module sizes remain fixed 

2. As the modularity is a sum of the difference of 

proportions, − 1 ≤ Q ≤ 1.
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Considerations

 

1. Suppose we have a network with two clusters of equal 

size, where all ties are within each module and no tie 

connects nodes from different modules. What would be 

the modularity?

 

2. It is designed for undirected graphs (see Kim et al., 2010)

 

3. Resolution limit
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Considerations

 

1. Suppose we have a network with two clusters of equal 

size, where all ties are within each module and no tie 

connects nodes from different modules. What would be 

the modularity? 

It would be Q = 0.5 .

 

▷

 

Half of the edges will be within-modules in the null 

model (i.e., by chance)

 

▷

 

The upper bound of Q = 1 is reached only in networks 

with infinite clusters.

 

2. It is designed for undirected graphs (see Kim et al., 2010)

 

3. Resolution limit
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Considerations

 

1. Suppose we have a network with two clusters of equal 

size, where all ties are within each module and no tie 

connects nodes from different modules. What would be 

the modularity?

 

2. It is designed for undirected graphs (see Kim et al., 2010) 

There were suggestions to generalize it for directed 

graphs, some of them are more successful than others.
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Equivalence to Second Formula



 

The second expression of the modularity is given as

 Q = \frac {1}{2m}\sum _{i = 1}^n\sum _{j=1}^n \left (a_{ij} - \frac {d_{i}d_{j}}{2m}\right )\delta (c_i, c_j) 



































 

It’s quite simple to show that this is the same as the 

expression from the previous slides.

 

Recall that we had

 Q = \sum _{k=1}^K (e_{kk} - e_k^2) = \sum _k e_{kk} - \sum _k e_k^2.































 

We will focus of each of the term separately.
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First term: 

∑ 

k 

ekk

 

Let Iik 

= 1 if ci 

= k and zero otherwise, where ci 

= k means 

that node i belongs to module k . 

Recall that ekk 

is simply the proportion of ties that are in 

module k . So, we can write

 e_{kk} = \frac {1}{2m}\sum _{i=1}^n\sum _{j=1}^n a_{ij} I_{ik}I_{jk}



















 

 

and summing over all k , we get

 \sum _{k=1}^K e_{kk} = \frac {1}{2m}\sum _{i=1}^n \sum _{j=1}^n a_{ij} \delta (c_i, c_j).
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Second term: 

∑ 

k 

e2
k

 

We note that

 e_k^2 &= \left (\frac {1}{2m}\sum _{i=1}^n\sum _{j=1}^n a_{ij}I_{ik}\right )^2 = \left (\frac {1}{2m}\sum _{i=1}^n d_{i}I_{ik}\right )^2 \\ &= \frac {1}{4m^2}\sum _{i=1}^n \sum _{j=1}^n d_{i}d_jI_{ik}I_{jk}































































 

 

Summing this over all k gives, therefore,

 \sum _k e_k^2 = \frac {1}{2m}\sum _{i=1}^n \sum _{j=1}^n \left (\frac {d_id_j}{2m}\right ) \delta (c_i, c_j).
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Putting the terms together

 

Putting these two expressions together, we obtain

 Q &= \sum _{k=1}^K e_{kk} - \sum _k e_k^2 \\ &= \frac {1}{2m}\sum _{i=1}^n \sum _{j=1}^n a_{ij} \delta (c_i, c_j) - \frac {1}{2m}\sum _{i=1}^n \sum _{j=1}^n \left (\frac {d_id_j}{2m}\right ) \delta (c_i, c_j) \\ &= \frac {1}{2m}\sum _{i=1}^n \sum _{j=1}^n \left ( a_{ij} - \frac {d_id_j}{2m}\right ) \delta (c_i, c_j)







































 






























































 

as desired.
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Code Length and the Map Equation



 

The Minimum Description Length (MDL) Principle

 

Informally stated, the MDL principle states 

Any regularity in the data can be compressed with 

the help of a model. The shorter our description of 

the data (with the help of the model) the better our 

model.

 

So, if 

1. there are patterns in the data; and 

2. we have a “good” model to describe the pattern 

we’ll be able to describe our data with a shorter code, once we 

use the model 

And a model that leads to a shorter description length in total 

is the better model
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The Minimum Description Length (MDL) Principle

 

To be a bit more formal, let D be the data and M our model, 

and let L ( x ) be the total description length of x .

 

When we encode the data with the help of our model, then

 L_{M}(D) = \underbrace {L(D\given M)}_{\text {DL of data given model}} + \underbrace {L(M)}_{\text {DL of model}}.

    









   

 









 



 

So, LM( D ) will be shorter when our model compresses the data 

a lot ( L ( D | M ) is small) and is parsimonious ( L ( M ) is small).
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Description Length?

 

But what exactly is the description length of the data or 

model?

 

Of course, the description length depends on the code we use.

 

And we don’t want to deal with specific codes in this course (!)

 

Here, we just note that the description length of 

1. a random source increases with its entropy (read 

uncertainty/variability) 

2. a model increases with the (effective) number of 

parameters
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Example: Regression Problem

 

Suppose we have the following dataset and we want to 

describe how the y -values depend on x -values.

 

We’ll try to capture the pattern in the data using a polynomial 

regression model.
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Mean Outcome (Var[e]: 0.0389) Linear Reg (Var[e]: 0.0241)

Poly. of Degree 3 (Var[e]: 0.0033) Poly. of Degree 15 (Var[e]: 0.0019)
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L ( D | M ) : The description length of the data decreases 

monotonically as our model becomes more complex (i.e, 

residual variance decreases).

 

L ( M ) : The description length of the model increases with 

more complexity

 

L ( D | M ) + L ( M ) : The description length of the data (encoded 

with the help of our model) will first increase and, thereafter, 

decrease again.

 

The MDL principle says that we should choose the model M 

∗ 

for which L ( D | M ) + L ( M ) is minimized. 

The principle helps us find the “sweet spot” between 

underfitting and overfitting.
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The Map Equation



 

Consider describing an infinite-length random walk on a graph. 

We need to describe where the random walker is at time t 

and, thus, need a code for each node in the graph. 

Under reasonable conditions, the visiting probabilities will 

converge to a unique limiting distribution π ∞ 

The most efficient way to describe the trajectory of the 

random walker is by 

1. assigning short codes to nodes with high visiting 

probabilities (elements of π ∞ 

that are close to 1) 

2. long codes to nodes with low visiting probabilities
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Source: Rosvall & Bergstrom 2008 PNAS
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Here is the crucial observation for community detection: 

Just as we can use a regression model to capture the pattern 

in data and, thereby, reduce the description length of the data, 

we can exploit the clustering pattern in the network to reduce 

the description length of the random walk .

 

If the network is sufficiently clustered, we can shorten the 

descriptioin length by 

1. assigning unique codes to modules 

2. and repeatedly using the same short codes within each 

module 

As long as we are able to communicate when the random 

walker moves from one module to another, there is no 

ambiguity in the code.

 

It’s the same principle as the polynomial regression model 

example.

 

28/31



 

Here is the crucial observation for community detection: 

Just as we can use a regression model to capture the pattern 

in data and, thereby, reduce the description length of the data, 

we can exploit the clustering pattern in the network to reduce 

the description length of the random walk .

 

If the network is sufficiently clustered, we can shorten the 

descriptioin length by 

1. assigning unique codes to modules 

2. and repeatedly using the same short codes within each 

module 

As long as we are able to communicate when the random 

walker moves from one module to another, there is no 

ambiguity in the code.

 

It’s the same principle as the polynomial regression model 

example.

 

28/31



 

Here is the crucial observation for community detection: 

Just as we can use a regression model to capture the pattern 

in data and, thereby, reduce the description length of the data, 

we can exploit the clustering pattern in the network to reduce 

the description length of the random walk .

 

If the network is sufficiently clustered, we can shorten the 

descriptioin length by 

1. assigning unique codes to modules 

2. and repeatedly using the same short codes within each 

module 

As long as we are able to communicate when the random 

walker moves from one module to another, there is no 

ambiguity in the code.

 

It’s the same principle as the polynomial regression model 

example.
 

28/31



 

L ( D ) = L ( D | M ) + L ( M ) .

 

Source: Rosvall & Bergstrom 2008 PNAS
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The Map Equation

 

We don’t need to assign “real” codes to the node. Instead, we 

rely on Shannon’s (1948) Source Coding Theorems to obtain 

the map equation :

 L(D) &= L(D\given M) + L(M) \\ &= \sum _{i=1}^ m p_\circlearrowright ^i H(\mc P^i) + q_\curvearrowright H(\mc Q),

       









    

 

(see Rosvall et al. 2009. “The map equation,” Eur. Phys. J. 

Special Topics 178 for details.)

 

Following the MDL principle, the partition of the node set 

P = {P1 

, ..., Pm 

} that minimizes the expression above is 

chosen as the best partition.
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Considerations

 

1. MDL is a “general principle” to find good models. 

Accordingly, the Map Equation can be easily generalized 

to find more complex structures

 

▷

 

Second-order Markov dyamics (Rosvall et al., 2014, 

Nature Communications)

 

▷

 

Finding multi-level community structures (Rosvall and 

Bergstrom, 2011, Plos One)

 

▷

 

Finding overlapping community structures (Esquivel and 

Rosvall, 2011, Physical Review X) 

2. The Map Equation naturally incorporates the direction of 

ties in networks 

3. If you are curious about MDL, read Grünwald (2007)
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