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Introductory Notes

In this note, we’ll go through eigenvalues/eigenvectors and Markov chains. The treatment of these
topics will be quite superficial and focuses only on the elements that are needed to understand
further materials that will be discussed in our class. In particular, we consider mainly simple graphs
that are undirected and connected. This implies that we won’t need to deal with transient or
absorbing states, communication classes, and recurrence when discussing Markov chains (at least
for our purposes).

The note will become “a bit” more formal towards the end in order to keep track of the results. I
hope students who have only limited exposure to mathematical texts will not be driven away by the
terms “lemma” or “corollary.” You can think of these as bookkeeping devices, to prevent statements
that start with “as we have discussed in third line of the first paragraph that appeared two pages
ago. . . ” In the end, if you have understood the note up to the section “Stationary and Limiting
Distributions,” you can just jump to Theorem 3 in case you don’t want to go into the nitty-gritty of
Markov chains.

Most statements are accompanied with a proof in the appendix that I believe are accessible without
knowledge of complex numbers, analysis/measure theory, or linear algebra beyond the superficial
level. So, I believe most students will be able to follow them if they invest enough time. Given that,
the proofs are by no means the main point of this note. They are there for the curious and can be
skipped. The same is true for the R code: it is included for those who might be interested but is not
essential and can be skipped.

In preparing the notes, I’ve consulted Levin et al. 2008. Markov Chains and Mixing Times for the
discussion of Markov chains. However, I do not recommend this book to sociology students. The
authors say that the material requires only undergraudate-level knowledge, but the undergraduates
they have in mind are majoring in mathematics not sociology. In general, I’ve tried to make the
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material more accessible to students, which basically means that the discussion will be much more
verbose and lengthy (e.g., irreducibility and aperiodicity cover not even a single page in the book).

All matrices and vectors are written in bold font to distinguish them from scalars (1× 1 matrices;
you can think of them as real numbers). All vectors, v, will be assumed to be column vectors; when
we want to denote a row vector, we’ll use v>, where > stands for the transpose. All matrices will be
assumed to be real, i.e., all elements aij of the matrix A are assumed to be real numbers.

It is assumed that students know what an matrix inverse is. The (multipicative) inverse of a non-zero
real number x is the “reciprocal” of x—i.e., x−1 or 1/x. If you multiply x by it’s inverse, you’ll get
the (multiplicative) identity—i.e., x× x−1 = x−1 × x = 1. Similarly, if you have a square matrix A,
the inverse of A is a matrix A−1, such that AA−1 = A−1A = I, where I is the identity matrix.
Not all matrices have an inverse. If the inverse of A exists, A is called invertible, otherwise A is
singular. Two properties of the matrix inverse that’ll be used below are the following:

1. A square matrix A is invertible if and only if its determinant is non-zero.

2. If A and B are both invertible square matrices of the same dimension, then the matrix
C = (AB) is invertible as well and is equal to C−1 = (AB)−1 = B−1A−1.

Eigenvectors

Let A be a n× n (square) matrix of real numbers. For every such matrix A, we can find n scalars
λi and non-zero vectors xi, such that

Axi = λixi, i = 1, 2, ..., n. (1)

The vectors xi are called eigenvectors of A and λi’s are called the corresponding eigenvalues.1

Notice that eigenvectors are not uniquely defined: when x is an eigenvector of A with corresponding
eigenvalue λ, then the pair (λ, cx) for any non-zero c will also form a valid eigenpair, since it satisfies
equation (1). Out of this reason, we often require that the eigenvectors have a length (or norm) of 1,
which means that all eigenvectors satisfy ‖xi‖2 =

√
x>i xi = 1. When we talk about eigenvectors of

a matrix A, these “normalized” versions are often meant. But when talking about Markov chains,
which we will do later in this note, eigenvectors (assuming that they have non-negative elements)
are usually normalized to sum to one in order to represent probability vectors.2 What normalization
is implied will be evident from the context.

To understand what eigenvectors are, it might be good to recap how matrices transform vectors.
Whenever you multiply a vector v by the matrix A, you will get another vector v∗ = Av, where v

1Even when A is a real matrix, λi and xi will be, in general, complex. But we won’t deal with this issue in this
note.

2A probability vector p is a vector that consists of non-negative elements the sum of which is equal to one. Hence,
it represents the probability distribution over a finite set.
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and v∗ are of the same dimension. In general, v and v∗ will point in different directions, which
means that the matrix A stretches and rotates the vector v into v∗. Consider, for example,

v =
[
1
1

]
and A =

[
1 1.25

0.2 0.75

]
.

The vector v will point from the origin (0, 0) to (1, 1) and multiplying v from the right by A will
transform this vector into v∗, which points to (2.25, 0.95) (see plot below).

v1

v2

v

(0, 0)

Vector v points from (0, 0) to (1, 1)

v1

v2

v v∗ = Av

(0, 0)

Vector v∗ points from (0, 0) to (2.25, 0.95).

We see that the length of v is stretched by A and the direction it points to is changed as well.

A quite interesting question to ask is the following: “are there any vectors the direction of which
is not changed when multiplied by A?” These directions are what eigenvectors stand for. If you
look again into equation (1), you’ll discover that transforming the eigenvector x by the matrix A
(i.e., Ax) is the same as multiplying A by a scalar λ. But multiplying a vector by a scalar can only
stretch the vector x; it will not rotate it in any way and, hence, not change its direction (except for
flipping it 180 degrees).

For example, the first eigenvector of A and its corresponding eigenvalue are

x =
[
0.9545
0.2981

]
and λ = 1.3904.

So,

x∗ = Ax = (1.3904)x =
[
1.3272
0.4145

]

which means that A is just stretching x by about 40% further in the same direction, as shown
below:
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x x∗ = Ax

(0, 0)

Multiplying an eigenvector x of A by the matrix A itself will not change the direction of x.

Right and Left-eigenvectors

What we have defined as the eigenvectors of A in equation (1) are sometimes called the right-
eigenvectors. On the other hand, the left-eigenvectors are defined by the equations

x>i A = λix>i , i = 1, 2, ..., n. (2)

Transposing both sides of (2), it is easy to see that the left-eigenvectors of A are the right-eigenvectors
of A> and vice versa. A result that is not so obvious, but which we’ll need later, is the following:

Lemma 1. Let A be a square matrix. Then A and A> have the same eigenvalues. In other words
if λ is an eigenvalue of A, then it is an eigenvalue of A> as well.

The set of all eigenvalues of a matrix A, {λ1, ..., λn} is called the spectrum of A. So, whenever you
hear a something with spectrum or spectral (e.g., “spectral clustering,” “spectral graph theory,”
etc.) it often deals with the eigenvalues/eigenvectors of matrices.

Why are Eigenvectors Useful?

Eigenvectors and eigenvalues turn up everywhere in applications of linear algebra. Here we will
consider one important property that will be useful in considering Markov chains.

It is often convenient to consider all n eigenvector-eigenvalue pairs simultaneously as follows:

AX = XΛ (3)

where

X = [x1,x2, ...,xn] and Λ =


λ1 0 · · · 0
0 λ2 · · · 0
...

... . . . ...
0 0 · · · λn

 ,

i.e., X is a matrix where the ith column is the ith eigenvector and Λ is a diagonal matrix where the
(i, i)th entry is λi and the rest is zero (you should verify that the ith column of both sides of the
equation is Axi = λixi.)
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Now, if the matrix of eigenvectors X is invertible (i.e., the inverse-matrix X−1 exists), then we can
write the matrix A in terms of its eigenvectors and eigenvalues by post-multiplying both sides of
(3) by X−1:

A = XΛX−1, (4)

which is called the eigendecomposition of the matrix A. Square matrices for which the eigendecom-
position exists (i.e., for which X is invertible) are called diagonalizable.

The eigendecomposition has lots of merits. For example, we can write the inverse of A as

A−1 =
(
XΛX−1)−1 = XΛ−1X−1,

where Λ will have λ−1
i in the ith diagonal. Also, raising the matrix A to powers becomes very easy.

For example:
A2 = AA = (XΛX−1)(XΛX−1) = XΛIΛX−1 = XΛ2X−1,

where I is the n× n identity matrix and

Λ2 = ΛΛ =


λ2

1 0 · · · 0
0 λ2

2 · · · 0
...

... . . . ...
0 0 · · · λ2

n

 .

Multiplying A one more time gives

A3 = A2A = (XΛ2X−1)(XΛX−1) = XΛ3X−1

and, in general, we see that
Ak = XΛkX−1.

So, using the decomposition in (4), raising the matrix X to a power k amounts to nothing else then
raising the eigenvalues of A to that power.

Now, suppose an eigenvalue λi is strictly smaller in magnitude then 1, i.e., |λi| < 0. Recall from
basic algebra that each time you multiply a number smaller in magnitude than 1 by itself, the result
will get closer and closer to zero until it converges to 0. That is, |λi|k+1 < |λi|k for k > 0. On the
other hand, if |λi| > 1, then |λi|k+1 > |λi|k for k > 0.3 Below is a plot that shows how eigenvalues
will behave when raised to larger and larger powers:

3Of course, this holds also for complex numbers, but let us assume that all eigenvalues are real.
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Hence, we see that if we self-multiply A an infinite amount of time, the result will depend on the
magnitude of the eigenvalues of A, i.e.,

lim
k→∞

Ak = X
(

lim
k→∞

Λk
)

X−1

= X


limk→∞ λ

k
1 0 · · · 0

0 limk→∞ λ
k
2 · · · 0

...
... . . . ...

0 0 · · · limk→∞ λ
k
n

X−1.

(5)

For eigenvalues that are greater in magnitude than 1, the corresponding diagonal element of Λ will
“explode,” while eigenvalues with smaller magnitude than 1 will “vanish” to zero. For example, if all
eigenvalues are smaller than 1 in magnitude, then limk→∞Ak = 0, where 0 is a n×n square matrix
of zeros. Any “interesting” convergence result will, therefore, be achieved only if the matrix has a
subset of eigenvalues that are equal to 1 in absolute value, while other eigenvalues are smaller than 1
in magnitude. These considerations will be important when we discuss Markov chains on networks.

An Application: Eigenvector Centrality

One application in which powers of A play a major role is eigenvector centrality, first proposed by
Philip Bonacich in “Factoring and weighting approaches to status scores and clique identification”
published in the Journal of Mathematical Sociology in 1972. Let G(V,E) be a graph and A its
associated adjacency matrix. We assume that the graph is connected (each node is reachable from
all others via a path) and undirected (ties a symmetric). Before introducing the measure, we state
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an important theorem from linear algebra, which we will not prove here.4

Theorem 1 (Spectral Theorem). Let A be real symmetric square matrix of dimension n×n. Then
all eigenvalues of A are real and there exists an orthonormal basis of Rn consisting of eigenvectors
of A.

For our current purpose, the term “orthonormal basis” can be understood as saying that the matrix
of eigenvectors X = [x1, ...,xn] has an inverse, X−1, and that this inverse is equal to the transpose
of X, i.e., X−1 = X>. So, if A is symmetric (which it will be for undirected graphs), we can rewrite
the eigendecomposition in equation (3) as

A = XΛX−1 = XΛX> =
n∑
i=1

λixix>i ,

which is referred to as the spectral decomposition of symmetric square matrices (you should verify
that the last equality works; notice that xix>i is a n× n matrix).

Bonacich was concerned with measures of popularity. He starts with the first-order popularity
measure defined as

ρ
(1)
i =

n∑
j=1

aij

where aij is the (i, j)th entry of the adjacency matrix A. So we see that this measure is nothing
but the degree of node i (or how many other nodes in the network are connected to i by a walk of
length 1). The second-order popularity measure is about the degree of each nodes’ neighbors (how
many other nodes are connected to i in walks of length 2)

ρ
(2)
i =

n∑
j=1

n∑
k=1

aikakj =
n∑
j=1

a
(2)
ij ,

where a(2)
ij is the (i, j)th entry of A2 = AA. These equations get quickly out of control as we move

to higher order measures of popularity. So let us switch to matrix notation, where we have for the
first- and second-order popularity

ρ(1) =


ρ

(1)
1
ρ

(1)
2
...
ρ

(1)
n

 = A1 and ρ(2) =


ρ

(2)
1
ρ

(2)
2
...
ρ

(2)
n

 = A21

4After adding the proof, I thought it’s too much. For the interested student, you can find a accessible proof in
Lemma 1 (eigenvalues are real) and Lemma 4 (eigenvectors form orthonormal basis) of Professor David P. Williamson’s
lecture notes on spectral graph theory.
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where 1 is a vector of ones. The kth-order popularity measure is, thus,

ρ(k) = Ak1

Bonacich goes on to define the ∞-th order popularity measure as

ρ(∞) = lim
k→∞

Ak1.

Of course, an infinte-length walk will connect all nodes to all others an infinite number of times,
given that the graph is connected. This implies Ak will “blow up,” and all entries of ρ(∞) will be
simply ∞.

However, we can use a simple “trick” to still obtain a meaningful measure that reflects the relative
importance of each node. Consider the matrix B = λ−1

1 A, where λ1 is the largest eigenvalue of A.
The matrix B will have the same structure as A and, thus, contains the same relational information,
but every entry that is equal to 1 will be replaced by 1/λ1. Notice as well that the eigenvectors of
B are the same as those of A and only the eigenvalues change (if we define the eigenvectors to have
length equal to one). To see this, let xi be an eigenvector of A corresponding to the eigenvalue λi.
Then,

Bxi = (λ−1
1 A)xi = λ−1

1 (Axi) = λ−1
1 λixi = (λi/λ1)xi,

which shows xi is an eigenvector of B with corresponding eigenvalue µi = λi/λ1.

So, instead of deriving the ∞-order popularity measure of based on A, Bonacich uses B for this
purpose. Using the spectral decomposition of B, we see that

lim
k→∞

Bk = lim
k→∞

n∑
i=1

µki xix>i

= lim
k→∞

[
µk1x1x>1 + µk2x2x>2 + · · ·+ µknxnx>n

]
= lim

k→∞

[(
λ1
λ1

)k
x1x>1 +

(
λ2
λ1

)k
x2x>2 + · · ·+

(
λn
λ1

)k
xnx>n

]

=
[

lim
k→∞

(
λ1
λ1

)k]
x1x>1 +

[
lim
k→∞

(
λ2
λ1

)k]
x2x>2 + · · ·+

[
lim
k→∞

(
λn
λ1

)k]
xnx>n

= x1x>1 .

The last step follows from limk→∞(λi/λ1)k = 0 for all other terms except the first, because λ1 > |λi|
for all i. So, the eigenvector centrality is defined as

e = B∞1 = x1x>1 1 = x1

which is just the eigenvector corresponding to the largest eigenvalue of the adjacency matrix A.
The only problem with this derivation is that the largest eigenvalue of A might not be unique (i.e.,
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there might be multiple eigenvalues equal to λ1). Bonacich just “assumes” that λ1 is largest in
magnitude and positive. Below, we’ll see that this is a reaosnable assumption, given that the graph
G is connected and contains at least one odd-length cycle.

Markov Chains: Throwing Frisbee at Stewart Park

With eigenvalues/eigenvectors at hand, let us move on to Markov chains. Consider a group of 5
network scholars that play frisbee. They visit Stewart Park and arrange themselves in the following
positions:

v4

v5
v1

v2
v3

Spending too much time on research and not enough on frisbee practice, these scholars are extremely
bad in throwing the disk around. The maximal distance they can throw the disk is given in the
following plot (only for v1 and v4).

v4

v5
v1

v2
v3

So, v1 is able to throw the disk to v2 and v5 but not to v3 or v4; v4, on the other hand, is able to
reach v3 and v5, but not the rest. Assuming that all of these scholars are equally bad in frisbee, we
can represent who can pass the disk to whom by a graph of the following form:

Figure 1: Network representation of who can throw the frisbee to whom

v4

v5

v1

v2

v3
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and the corresponding adjacency matrix

A =



v1 v2 v3 v4 v5

v1 0 1 0 0 1
v2 1 0 1 0 1
v3 0 1 0 1 0
v4 0 0 1 0 1
v5 1 1 0 1 0



Now, suppose that each time someone receives the frisbee, she’ll throw it to one of her neighbors
at random. For example, if v4 has the frisbee, she’ll throw it to nodes v3 or v5 with probability
0.5 and 0.5; if v2 has the frisbee, he’ll throw it to v3, v5 or v1 with probability 1/3, 1/3, and 1/3,
respectively. We see that the probability that a node vi will throw the frisbee to any of its neighbors
is inversely proportional to its degree: the more neighbors a node has, the less likely that each of
the neighbors will receive the frisbee on the next turn.

Transition Matrix

Let’s formalize these statements a bit more. Let Yt be a random variable that takes on values in the
vertex set of the graph G(V,E)—Yt ∈ V = {v1, ..., vn}—where {Yt = vk}, vk ∈ V , represents the
event that node vk receives the frisbee at time t. We will also use the shorthand notation {Yt = k}
or {Yt = kt} for this event. The sequence of random variables {Y0, Y1, ..., Yt, ...} form a stochastic
process that describes the movement of the frisbee. An important assumption that we’ve made is
that the location of the frisbee at time t+ 1 depends only on where it is at time t, instead of the
whole history preceding t. In other words, we have assumed that

Pr[Yt+1 = kt+1 |Yt = kt, Yt−1 = kt−1, ..., Y0 = k0] = Pr[Yt+1 = kt+1 |Yt = kt].

Stochastic processes that have this structure are said to have the Markov property and are called
Markov chains.

The conditional probabilities of where the frisbee will move at time t+ 1 given that vi has it in her
hands at time t are called transition probabilities. For the frisbee-throwing example we have

pij = Pr[Yt+1 = vj |Yt = vi] =

d(vi)−1, if aij = 1

0, if aij = 0,
(6)

where d(vi) is the degree of node vi. In other words, if {vi, vj} is an edge in the graph, {vi, vj} ∈ E,
the probability that vi will pass on the frisbee to vj is inversely-proportional to the degree of vi; if
vi and vj do not have an edge, then the probability of passing on the frisbee from vi to vj is zero
(the scholars cannot throw that far).
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The set of values that Yt can take on (here the vertex set V ) is called the state space of the Markov
chain. As the state-space is finite, we can represent all the transition probabilities compactly as a
matrix

P = D−1A, (7)

where D is a diagonal matrix with (i, i)th entry equal to the degree of node vi.5 The matrix P is
called the transition matrix of the Markov chain and, for our example graph, it will be

P =



v1 v2 v3 v4 v5

v1 0 1
2 0 0 1

2
v1

1
3 0 1

3 0 1
3

v1 0 1
2 0 1

2 0
v1 0 0 1

2 0 1
2

v1
1
3

1
3 0 1

3 0


Notice that each row of P sums to one, which should be the case since the ith row gives us the
probability distribution that the frisbee will be thrown from vi to any of the other nodes.

Another way to represent P is to use a directed graph, where we label the directed edges with the
probabilities of transition:

Figure 2: Graph representation of Markov chain

v1

v2
v3

v4

v5

1
2

1
2

1
3

1
3

1
3

1
2

1
21

2

1
2 1

3
1
3

1
3

There are two important things to notice about the transition matrix of this example. First, we
note that the matrix P does not change over time. This means that the probability that vi will pass
the frisbee to vj remains the same, even after infinite passages of the frisbee. A Markov chain where
the transition probabilities do not change with t are called time homogeneous. Second, notice that
the network in Figure 1 is undirected, which reflects our assumption that whenever vi can throw

5If this does not make immediate sense to you, convince yourself by creating multiplying these matrices by hand.
You should get that pij is the probability of moving from i to j. The intuition is as follows: pre-multiplying A by
D−1 has the effect of multiplying the ith row of A by the ith diagonal entry of D−1, which is d−1

i . Whenever the jth
column of the ith row of A—i.e., aij—is equal to zero, it will stay zero; when aij = 1, on the other hand, this value
will be switched to the d−1

i .
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the frisbee to vj , vj can throw it to vi as well. Hence, even though P is not a symmetric matrix,
pij > 0 implies that pji > 0. This will simplify our analysis of the Markov chains considerably.

Marginal Probabilities

Now, suppose that the first scholar to throw the frisbee is node v1. As v1 will hold the frisbee
with probability one, the probability distribution of where the frisbee is located at time 0 can be
represented by the vector π>0 = [1, 0, 0, 0, 0]. Next, we know that at time 1, the node to receive the
frisbee is either v2 or v5, each with probability 1/2. Using P, we can calculate this as6

π>1 = π>0 P.

Of course, at this point (t = 1), we are not sure anymore whether v2 or v5 holds the frisbee, which
makes calculations of where it will be at time t+ 2 not as straightforward. To calculate the vector
π2, we use the Law of Total Probability. For example, the probability that the frisbee will be in the
hands of v1 is

Pr[Y2 = 1] =
n∑

k1=1
Pr[Y2 = 1 |Y1 = k1]︸ ︷︷ ︸
the (k1, 1)th entry of P

× Pr[Y1 = k1]︸ ︷︷ ︸
the k1th entry of π1

= π>1 p1,

where p1 is the ith column of P. Similarly, Pr[Y2 = 2] = π>1 p2, Pr[Y2 = 3] = π>1 p3, and so on, and
row-wise stacking all these results together, we obtain

π>2 = π>1 P.

But we have just discovered that π>1 = π0P. So, we could rewrite this as

π>2 = π>1 P = (π>0 P)P = π>0 P2.

In fact, because the past trajectory of the frisbee doesn’t matter when determining the probability
distribution of the next step, we can write the relationship between the marginal probabilities and
the transition probabilities as

πt =
(
Prob. location at t− 1

)
×
(
given location at t− 1, prob. of location in the next step

)
,

or
π>t = π>t−1P. (8)

6Again, if this result doesn’t make immediate sense, try to do the calculation by hand and check that you get
indeed the vector π>1 = [0, .5, 0, 0, .5].
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and, further,

π>t = π>t−1P

= π>t−2P2

= π>t−3P3

...

= π>0 Pt.

So, we have the result
π>t = π>0 Pt. (9)

Stationary and Limiting Distribution

Now, we’ll try to answer the question: after an infinite number of throws, what is the probability
that vi would hold the frisbee in her hands? Would this probability depend on the initial state (i.e.,
the scholar who throws the frisbee first)? These questions lead us to consider the limiting behavior
of Markov chains. As it is always the case with limits, the discussion will be necessarily a bit more
formal.

Sometimes a subtle distinction is made between a stationary distribution (or steady state) of a
Markov chain and its limiting distribution. This might confuse you in the future (at least it was
confusing to me when I first encountered these concepts), so let us make the distinction clear.

Suppose there is a probability vector π defined over the (finite) state space of a Markov chain that
satisfies the balance equation

π> = π>P. (10)

Then π is called a stationary (or steady state) distribution of the Markov chain. The name
“stationary” makes intuitive sense: equation (10) tells us that if we start the chain with distribution
π0 = π, all further iterations of the process will leave the distribution unchanged. From our
discussion on eigenvectors, we see immediately that π must be a left-eigenvector of P corresponding
to an eigenvalue of λ = 1. So a vector that satisfies the balance equation always exists (although
it might be complex or not non-negative and, hence, not a probability vector). The important
question is whether

1. π defines a probability distribution: are all elements are non-negative real
numbers that sum to one?

2. whether π is unique: are there multiple π that satisfy π> = π>P? Will
the vector π depend on the initial distribution?

3. whether πt converges to a unique π as t→∞: if π is unique, do we have
limt→∞ πt = π regardless of where we start the chain?
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In 3., we considered the notion of a vector to which πt converges as t→∞. This vector, if it exists,
is called the limiting distribution of the Markov chain can be expressed as:

π>∞ = π>0 P∞. (11)

At this point, you might wonder why the distinction is made between stationary and limiting
distributions. After all, if π doesn’t change after reaching the steady state, it must be the case that
π = π∞. The problem is that πt might never reach the steady state (even if the distribution π is
unique). Here is a very simple counter example: consider a Markov chain on the state space {1, 2}
with transition matrix

P =
[
0 1
1 0

]
. (12)

Hence, whenever Yt = 1, then Yt+1 = 2 with probability 1, and when Yt = 2, then Yt+1 = 1 with
probability 1. It is not difficult to see that π> = π>P for the vector π = [0.5, 0.5]>. So π is a
stationary distribution. However, limt→∞Pt will not converge, but oscillate between[

0 1
1 0

]
and

[
1 0
0 1

]

and π will oscilate between [0, 1]> and [1, 0]>. This implies that limt→∞ πt doesn’t converge. So,
the limiting distribution does not exist in this case.7

When is the Stationary Distribution the Limiting Distribution?

It turns out that all conditions 1. to 3. hold if the transition matrix P has a specific structure.
Important to this discussion is the concept of a primitive matrix.8

Definition (Primitive Matrix). Let A be a non-negative square matrix. That is, A = (aij) with
aij ≥ 0 for i, j. Let a(k)

ij be the (i, j)th element of the matrix Ak. A is called primitive if there exists
a positive integer k such that a(k)

ij > 0 for all i, j.

For a transition matrix P to be primitive, there has to be some time point t at which all elements
of Pt = (p(t)

ij ) are strictly positive. Intuitively speaking, this means that any node vi must have a
non-zero probability to throw the frisbee to any other node vj at the tth iteration of the process.
The reason why primitive matrices are of importance is two fold: first, if there is a time point t
for which p(t)

ij > 0 holds for all vi, vj ∈ V , then the transition matrix P will stay positive (i.e., all
elements of P are strictly positive) for all subsequent periods.9 So, primitive matrices are non-zero

7Notice, however, that the proportion of visits to each state over time, µi = limT→∞
1
T

∑T

t=1 I(Yt = vi), where
I(A) is an indicator function that is 1 if A is true an 0 otherwise, will converge to π = [1/2, 1/2]>. This vector of
proportions is sometimes called the asymptotic frequency distribution (which is indeed a “probability” if you are a
Frequentist). We will, however, not dwell on this concept in this note.

8In the context of Markov chains, primitive matrices are sometimes called regular matrices.
9Note that the (i, j)th element of the matrix Pt+1 = PPt is

∑n

k=1 pikp
(t)
kj . All of the p(t)

kj terms are strictly
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square matrices that turn to positive matrices when raised to a sufficiently large power. The second
reason is that primitive matrices are the object of the following fundamental theorem, which we will
not be able to prove here:10

Theorem 2 (Perron-Frobenius, Primitive Matrix, Abridged). Let A a primitive matrix. Then,

1. There exists a real number ρ > 0, called the Perron root, that is an eigenvalue of A and is
strictly larger, in absolute value, than any other eigenvalue of A. That is, ρ > |λi| for all i.

2. The eigenvalue ρ is simple, i.e., there are no other eigenvalues of A equal to ρ.

3. All elements of the eigenvector corresponding to ρ, called the Perron vector, are strictly
positive.

The rest of this note will consider conditions that a graph G(V,E), such as the one in Figure 1, has
to satisfy in order for the associated transition matrix P = D−1A to be primitive. Further, we’ll
show that the Perron root is equal to 1 for transition matrices. Together this will establish that Pt

converges to a limit P∞, which implies that πt will converge to π∞, which is unique and stationary.

We start by showing that the transition matrix of a Markov chain on a finite state space is primitive
if it is irreducible and aperiodic.

Irreducibility

Definition (Irreducibility). Let P be the transition matrix of a Markov chain on a finite state space
V . P is irreducible if for any two states vi, vj ∈ V , there exists an integer k = k(vi, vj) such that
p

(k)
ij > 0.

Notice we have written k = k(vi, vj) to emphasize that this integer depends on the specific states vi
and vj—i.e., k(vi, vj) and k(vk, vl) are not necessarily equal. So, a Markov chain is irreducible if
you can reach any state from any other state in finite steps with positive probability. This condition
is weaker than primitivity, since for primitivity all states have to be reachable from all others after t
iterations, while for irreducibility, the time t to reach another state can depend on the pair (vi, vj)
under consideration.11

The Markov chain of the frisbee-throwing example is indeed irreducible, since each pair of nodes
can be reached through a path in Figure 2 with positive probability. For example, v1 can reach
v3 through the path (or “steps”) {v1, v2, v3} which has probability P ({v1, v2, v3}) = 1/2× 1/3 > 0,
among several other paths. An example of a Markov chain that is not irreducible is shown in Figure
3.

positive while pik, k = 1, 2, ..., n are all non-negative with at least one element strictly greater than zero. Hence,∑n

k=1 pikp
(t)
kj > 0 for all i, j implying that all elements of Pt+1 must be positive.

10Interested students might consult the last chapter of Mayer’s textbook Matrix Analysis and Applied Linear Algebra.
11This becomes clear when you compare the definitions. Primitivity states: “there exists a k such that for all vi, vj ,

p
(k)
ij > 0.” Irreducibility states: “for all vi, vj , there exists a k = k(vi, vj) such that p(k)

ij > 0.” Hence, primitivity
implies irreducibility but the converse doesn’t hold.
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Figure 3: Markov chain that is not irreducible
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Here we see that node v1 is not accessible from the either v6, v7, or v8 and vice versa. Hence, there
exists no integer k such that p(k)

16 > 0. In general, since pij > 0 whenever pji > 0 for random walks
on undirected graphs, the transition matrix P will be irreducible if there exists a path between all
pairs of nodes vi, vj ∈ V—in short if G is connected. This is certainly not the case in the underlying
graph of the Markov chain shown in Figure 3, which would look like the following:

v1

v2
v3

v4

v5

v6

v7

v8

It’s important to differentiate between weak and strong connectivity when dealing with Markov
chains on directed networks, where the chain (i.e., frisbee) moves only in the direction of the edges.
For example, consider the following weakly connected graph, where we have highlighted in blue the
only edge that is not reciprocated.

v1

v2
v3

v4

v5

v6

v7

v8

The Markov chain on this network will be able to move from any node in {v6, v7, v8} to any node in
{v1, ..., v5} but not the other way around. So, what is needed for irreducibility is that the graph is
strongly connected, such as one in the figure below:
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We’ll discuss a little bit what scholars do with directed networks at the end of the note. But for
now, we’ll discuss only undirected networks.

Aperiodicity

Another concept that is important in the discussion of stationary distributions of Markov chains is
aperiodicity. Consider the set T (vi) = Ti = {t ≥ 1 : p(t)

ii > 0}, which consists of all time steps (which
are integers) at which the chain returns to vi after a starting at vi. The period of the state vi is
defined as gdc(Ti), where gcd(A) denotes the greatest common divisor of the set A. For example, in
the simple Markov chain below in Figure 4, we see that it will take exactly 4 time steps until the
chain returns to its starting point, regardless of the node. So for all vi ∈ V , Ti = {4, 8, 12, 16, ...}
and the period of all vi’s is gcd(Ti) = 4.

Figure 4: Markov chain where each state has period 4
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Figure 5: Markov chain where each state has period 1
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For another example, consider the Markov chain in Figure 5, where we have added one additional
transition path from v1 to v3 to Figure 4. Now, there’s a cycle of length 3 from vi back to vi—
{v1, v3, v5, v1}—and a cycle of length 4—{v1, v2, v3, v4, v1}—and all other integers in the set Ti will
be of the form 4a + 3b where a, b are non-negative integers. Hence, we see that the period of v1

is gdc(T1) = 1. For v2, we see that there’s a cycle of length 4 (the old path from Figure 4) and,
in addition, a walk of length 7: {v2, v3, v4, v1, v3, v4, v1, v2}. Hence, again, we have a period of
gcd(T2) = 1. You can check that the period of v3 and v4 is 1 as well (you should verify this).

In fact, that all states have the same period in both examples is not a coincidence. And it will hold
for all irreducible Markov chains.

Lemma 2. If P is irreducible, then all states have the same period. That is, gdc(Ti) = gdc(Tj) for
all vi, vj ∈ V .

So, for irreducible Markov chains, we can talk about the period of the Markov chain itself, instead
of individual states. For example, the Markov chain represented in Figure 4 has a period of 4, while
that in Figure 5 has a period of 1. Markov chains with a period of 1 are called aperiodic.

For the purpose of this note, the following corollary will be useful.

Corollary 1. Let G(V,E) be a connected (undirected) graph with adacency matrix A. Then the
transition matrix P = D−1A is aperiodic if G contains at least one cycle of odd length.

Now, that we have the concepts of aperidoicity and irreducibility, we introduce a lemma that
connects transition matrices of Markov chains to the Perron-Frobenious Theorem.

Lemma 3. Let P be the transition matrix of a Markov chain on a finite state space. If P is
irreducible and aperiodic, then P is primitive.

With Lemma 3, we can apply the Perron-Frobenius Theorem (Theorem 2) to Markov chains on
networks, given that the graph is undirected, connected, and contains a cycle of odd length (which
can be also a self-loop, which has length 1). There remains, however, one last piece that we need to
rule out. We know that P has an eigenvalue of 1 from the balance equation in (10). But we have
not shown that this is the largest eigenvalue of P, which we need to prevent the Markov chain from
“blowing up.” Further, if we can show that 1 is the largest eigenvalue of P, then it would mean
that the stationary distribution is unique, since by the Perron-Frobenius Theorem there are no two
eigenvalues equal to 1.12 Fortunately, it turns out that λ = 1 is indeed the largest eigenvalue of any
transition matrix of Markov chains on finite state spaces (not necessarily aperiodic and irreducible).

Lemma 4. Let P a transition matrix of a Markov chain with finite state space. Then, for all
eigenvalues λ of P, we have |λ| ≤ 1.

12This follows from the fact that the geometric multiplicity (which can be understood as the number of independent
eigenvectors associated with an eigenvalue) cannot exceed the algebraic multiplicity of eigenvalues (the number of
eigenvalues that have the same value). But, again, we won’t go too deep here.
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Putting it All Together

Finally, we have arrived at the following theorem, the proof of which is now relatively easy if we
assume that P is diagonalizable (recall that the matrix of eigenvectors of P might not be invertible).
Even if P is not diagonalizable, the limiting distribution is unique and equal to the stationary
distribution; but the proof is a bit more complex.

Theorem 3. Let G(V,E) be a undirected graph that is connected and contains a cycle of odd length.
Then, a unique limiting distribution of the Markov chain on G exists and is equal to the stationary
distribution.

By Lemma 3, Lemma 4, and the Perron-Frobenius Theorem, the transition matrix P of the Markov
chain has a unique largest eigenvalue ρ = 1 and corresponding (right-)eigenvector x with strictly
positive entries. As each row of P sums to one, P1 = 1. Hence, the eigenvector corresponding to ρ
is simply 1. Further, all other eigenvalues of P are strictly less than 1 in magnitude. So,

lim
t→∞

Pt = X
(

lim
t→∞

Λt
)

X−1 = X


1 0 · · · 0
0 0 · · · 0
...

... . . . ...
0 0 · · · 0

X−1 = x1r>1 = 1r>1

where x1 is the first column of X and r>1 is the first row of X−1. This shows that P∞ will be a
matrix with each row equal to r>1 . Further, we have

lim
t→∞

π>0 Pt = π>0 P∞ = π>0 1r>1 = r>1 , (13)

which doesn’t depend on the initial state π0. Hence, regardless of where we start the chain, we’ll
arrive at r>1 as t→∞, which shows that the limiting distribution is unique.

Further, multiplying both sides of equation 13 from the right by P, we obtain(
lim
t→∞

π>0 Pt
)

P =
(

lim
t→∞

π>0 Pt+1
)

= lim
t→∞

π>1 Pt = r>1 P,

where π>1 = π>0 P. But limt→∞ π>1 Pt = r>1 implying that r>1 P = r>1 . Hence, the limiting
distribution must be the stationary distribution. Further, since the left-eigenvector corresponding
to ρ = 1 is unique, r1 must be the left-eigenvector of P corresponding to ρ.

We can also check that r1 is indeed a probability vector: first, all entries have to be non-negative
as limt→∞ π0Pt is the sum of non-negative real numbers. Second, as X−1X = I, r>1 x1 = 1 (since
this is the (1, 1)th entry of the identity matrix). But x1 = 1, so r>1 1 = ∑n

i=1 ri = 1. So, r>1 is a
probability distribution.
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Some code

We can check this also on our computer. Feel free to skip this part and jump to the graphs that
follow, as coding is not the main point of this note. I’ve just left the code here since I thought some
of you might be interested (the code uses the R language; for students who come from a C/C++ or
Python background, notice that R indexing starts from 1 not 0).

First, we create the adjacency matrix A.

R

# creating the adjacency matrix of the frisbee-throwing example
A = matrix(

c(0, 1, 0, 0, 1,
1, 0, 1, 0, 1,
0, 1, 0, 1, 0,
0, 0, 1, 0, 1,
1, 1, 0, 1, 0),

nrow = 5,
byrow = TRUE

)

We can also have a look into the adjacency matrix:

R

print(A)

#R> [,1] [,2] [,3] [,4] [,5]
#R> [1,] 0 1 0 0 1
#R> [2,] 1 0 1 0 1
#R> [3,] 0 1 0 1 0
#R> [4,] 0 0 1 0 1
#R> [5,] 1 1 0 1 0

Next, we create the transition matrix P and the initial vector π0:

R

# degree vector
# notes: rowSums sums all elements of A along the rows
d = rowSums(A)

# diagonal matrix with inverse degrees
# notes : 1) / is element-wise division (1 is boradcasted)
# 2) diag creates a diagonal matrix out of a vector
D_inv = diag(1/d)
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# transition matrix
# notes: %*% stands for matrix multiplication
P = D_inv %*% A

# initial distribution
# notes: as the first element of the 1 X n vector is 1, it means that v_1
# starts throwing the frisbee
p0 = matrix(c(1, 0, 0, 0, 0), nrow = 1)

Next, we define the function MCforward that runs the Markov chain with transition matrix P and
initial distribution π0 for t iterations (the #' lines are just comments describing the parameters and
return values of the function).

R

#' Iterate Markov chain for t time periods
#'
#' @param p0 initial distribution
#' @param P transition matrix
#' @param t number of iterations
#' @param final_P if TRUE, return also P raised to the tth power
#' @return returns a matrix where each row is the probability distribution at time t
MCforward = function(p0, P, t, return_P = c(TRUE, FALSE)) {

# get dimnsions of P
dP = dim(P)

# check arguments
stopifnot(

"matrix" %in% class(P), # check if P is a matrix
dP[1] == dP[2], # check if P is square (dim[1]: # rows, dim[2]: # of cols)
t %% 1 == 0, # check if t is integer (%% is the modulo operator in R)
dim(p0)[2] == dP[2] # p0 and P have the same # of columns

)

# create empty matrix to store results (NA stands for "missing")
probs = matrix(NA, nrow = t + 1, ncol = dP[2])

# add initial vector into first row
probs[1, ] = p0

# if we want to calculate the final P, we need to create a new object
P_final = P

# iterate Markov chain forwards
for (i in 2:(t + 1)) {
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# update probability vector
probs[i, ] = probs[i - 1, ] %*% P

if (return_P)
P_final = P %*% P_final # update P_final

}

# return results
# note: if a function encounters the "return" function, it will exit immediately
# and return the argument. Hence, if return_P == TRUE the next return
# function---i.e., return(probs)---will never be executed
if (return_P)

return(list(probs = probs, P = P_final))

return(probs)

}

With this function, we can calculate the history of the Markov chain, using the intial state p0 and
the transition matrix P we’ve created above. Let’s run t = 50 iterations, which should be enough
to see convergence in both π∞ and P∞:

R

# run MC chain for 30 iterations
res = MCforward(p0 = p0, P = P, t = 50, return_P = TRUE)

# get eigendecomposition of P
# note: this returns a list object with two elements, "values" and "vectors"
eigenP = eigen(P)

# get limiting distribution (first row of Xˆ{-1})
# note: 1) the "solve" function solves linear equations; when provided with only one
# argument, it will invert the matrix
# 2) by default, eigenvectors are normalized to have length equal to 1. So,
# we need to renormalize plim_raw to a probability vector
plim_raw = solve(eigenP$vectors)[1, ]
plim = plim_raw / sum(plim_raw)

We can also check that the plim object is equal to the first left-eigenvector of P and that P∞ is
a matrix in which each row contains the same probability vector, which is, again, equal to the
left-eigenvector.

R
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# first left-eigenvector
plim2 = eigen(t(P))$vector[, 1]
# rescale
plim2 = plim2 / sum(plim2)

# check for approximate equality of first row of Xˆ{-1}, first left-eigenvector
# and results of the function forwardMC
all.equal(plim, plim2, res$probs)

#R> [1] TRUE

# look at stationary dist.
print(plim)

#R> [1] 0.1666667 0.2500000 0.1666667 0.1666667 0.2500000

# look at Pˆ{infinity}
print(res$P)

#R> [,1] [,2] [,3] [,4] [,5]
#R> [1,] 0.1666667 0.2500000 0.1666667 0.1666667 0.2500000
#R> [2,] 0.1666667 0.2499817 0.1666850 0.1666484 0.2500183
#R> [3,] 0.1666667 0.2500275 0.1666392 0.1666941 0.2499725
#R> [4,] 0.1666667 0.2499725 0.1666941 0.1666392 0.2500275
#R> [5,] 0.1666667 0.2500183 0.1666484 0.1666850 0.2499817

where lines following the #R> symbol, shows the output of the R console.

When we plot the history of the Markov chain, we see that the chain converges quite fast (the
horizontal purple line represent the elements in r>i , i.e., left-eigenvector corresponding to ρ = 1):
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So, we see that πt indeed converges to the first left-eigenvector. How fast the chain will converge to
the limiting distribution will depend on the magnitudes of the remaining eigenvalues of P, especially
the second largest in magnitude. We know that |λi| ≤ 1 for all of them. But the closer they are,
in magnitude, to 1, the slower they will “vanish” over the iterations and, hence, the slower the
convergence to the stationary distribution.

A Somewhat Disappointing Result and PageRank

Now, here is a somewhat disappointing result that makes us wonder why we have spent all this
time on Markov chains on graphs.

Disappointing Result Let π = [π1, ..., πn]> be the limiting distribution of a Markov
chain on a connected, undirected graph G(V,E) that contains at least one odd-length cycle.
Then, πi = d(vi)

2|E| , where d(vi) is the degree of node vi and |E| the number of edges in G.

This result makes sense: the more ties a node has, the more often a random walk would visit the
node. On the other hand, it implies that the limiting distribution of the Markov chain doesn’t
give us any information about the connectedness of the nodes beyond their degree. Hence, using a
random walk measure of centrality on undirected graphs doesn’t make sense.13 On the other hand,
such a measure does make sense on directed networks. In fact, the same network can have quite
different limiting distributions depending on the directions of ties. To give you an example, consider
the following two graphs:

Figure 6: Same network structure with different edge characteristics
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(2) Directed Graph
(Numbers represent trans. probs.)

For the undirected graph, we know that the Markov chain will be irreducible and aperiodic (it’s
connected and has a odd-length cycle). Both of these properties hold for the directed graph as

13Whether the edeges are weighted doesn’t change this result as shown in the appendix.
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well: it is strongly connected, which implies irreducibility, and it contains a at least two cycles
with lengths that are relatively prime—e.g., {v1, v2, v1} is a cycle of length 2 and {v1, v2, v3, v1} has
length 3—implying aperiodicity.

In the undirected graph, see that the vector π∞ will have only three unique values, one probability
for the nodes {v3, ..., v7}, one for {v2, v8}, and one for {v1}. In fact, we can calculate these
probabilities by hand as 3/26, 2/26, and 7/26, respectively. For the directed graph, on the other
hand, the probabilities will vary much more across the nodes. Starting at v1, the chain will move
counter-clockwise along the circle, where at each time step, it has a probability of 1/2 to return
to v1. Hence, the probability of reaching the next node of on the circle between v3 and v8 will
decrease exponentially with it’s distance from v1, even though v3, ..., v7 have the exact same in- and
out-degree. On the other hand, v2 will have exactly the same probability as v1, as the chain must
visit v2 whenever it visits v1. Hence, in the directed graph, the limiting vector π∞ will provide us
much richer information about the structure of the graph than the node degrees.

We can use the R code from above to examine the relation between the node degrees and their
stationary probabilities. (To make the first plot more readable, the horizontal and vertical positions
are jittered by adding a little bit of noise. The nodes of each of the two clusters in the lower-left
corner would have the exact same positions.)
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The graph shows clearly that the in-degree of nodes in a directed graph is a poor predictor of the
stationary probabilities, except for the node v1. Combining in- and out-degree doesn’t help either.
Of course, the example that I’ve picked is quite extreme. But it shows that the vector π∞ inform
us how “central’ ’ each node is in a directed network.

The most often utilized centrality measure based on these intuitions is called PageRank. The
PageRank is just the vector π∞ calculated on a directed network, i.e., the ith element of this vector
will be the PageRank score of the node vi in the network. As we’ve discussed above, this vector is
not well-behaved if the Markov chain created by the random walk on the network is either reducible
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or periodic. To ensure that irreducibility and aperiodicity hold, PageRank uses a common “trick” of
turning the “random walker” on the network into a “random surfer.”

Without the modification, the transition matrix on a directed network is

pij = aijdout(vi)−1 (14)

where dout(vi) = ∑n
j=1 aij denotes the out-degree of node vi. Hence, the random walker (i.e., Markov

chain) moves from the node it is currently located to the adjacent nodes, where the probability of
moving to vj is inversely-proportional to the out-degree of node vi if (vi, vj) ∈ E and zero otherwise.

PageRank adds two modification to this transition probability. First, to overcome the problem of
“dangling nodes”—nodes with zero out-degree—it adds an out-going link from all dangling nodes to
all other nodes. Otherwise, the chain will nowhere to go after reaching these dangling nodes (they
are “absorbing states” in the laguage of Markov chains). Notice that adding these links will make
the transition matrix irreducible. The second “trick,” which makes the Markov chain aperiodic, is
to add a small “teleportation probability” to the transition probabilities for nodes that have some
outgoing ties. This turns the random walker into a “random surfer” which follows the links of the
graph with probability (1− τ) and “teleport” to any other node with probability τ . Adding these
two modifications to (14), we get the following transition probabilities:

pij = (1− τ)aijdout(vi)−1 +
(1− τ)I

(∑n
j=1 aij = 0

)
+ τ

n
, (15)

where I(A) is an indicator function that is equal to 1 if A is true and zero otherwise. To make sense
of this equation, it’s useful to break it down into three scenarios:

• Case 1: if (vi, vj) ∈ E, then the random surfer will move to vj with probability (1− τ) and
teleport to a random node in the network with probability τ ; but since there are n nodes in
the network, the probability that she will move to the node vj “by teleportation” is τ/n. So,
pij = (1− τ)dout(vi)−1 + τn−1.

• Case 2: if (vi, vj) /∈ E but the vertex vi has some outgoing edge(s)—i.e., ∑n
j=1 aij > 0—then

the random surfer will go to a node vk connected to vi, k 6= j, with probability (1− τ). Hence,
the only way she reaches vj is through teleportation, the probability of which is τ/n. Hence,
pij = τn−1 in this case.

• Case 3: if the node vi has no outgoing ties—i.e., ∑n
j=1 aij = 0—then the random surfer will

randomly jump to any other node in the network with probability 1. Hence, the probability
of hitting vj is pij = 1/n
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Notice that each row of the transition matrix will sum to one:

n∑
j=1

pij =

(1− τ)
∑n

i=j
aij

dout(vi) +∑n
j=1

τ
n = 1, if ∑j aij > 0∑n

j=1
1
n = 1, if ∑j aij = 0.

So P = (pij) is a valid transition matrix which is irreducible and aperiodic, implying that the
Markov chain has a unique limiting distribution. The PageRank is just this vector of limiting
probabilities. For the graph on the right of Figure 6, for example, the PageRank vector is

R

# create igraph object out of directed graph in Figure 6
# note: pkg::fun means that we use the function "fun" from the package "pkg".
# Of course, to use this function, you'd need to install the package "igraph,"
# which can be done by running
# install.packages("igraph", repos = "https://cran.rstudio.com", dependencies = T)
g = igraph::graph_from_adjacency_matrix(A_dir, mode = "directed")

# teleportation prob.
tau = .15

# calculate PageRank
# note: the algorithm in the igraph package uses the "damping factor" as an option
# which is just 1 minus the teleportation probability
# the "algo" option specifies which algorithm to use
pagerank = igraph::page_rank(g, damping = 1 - tau, algo = "prpack")$vector
print(pagerank)

#R> [1] 0.32158497 0.29209723 0.14289132 0.07947881 0.05252849 0.04107461 0.03620671
#R> [8] 0.03413785

Comparing that with hand-calculations shows that this is indeed the first right-eigenvector (i.e., the
stationary distribution) of the transition matrix P defined in (15):

R

# trans. matrix without teleportation
P_raw = diag(1 / rowSums(A_dir)) %*% A_dir
# add modification for teleportation (no dangling nodes in graph)
P = (1 - tau) * P_raw +

(tau / nrow(A_dir)) * matrix(1, nrow = nrow(A_dir), ncol = ncol(A_dir))

# calculate get left-eigenvector and normalize
pagerank2 = as.double(eigen(t(P))$vectors[, 1])
pagerank2 = pagerank2 / sum(pagerank2)
print(pagerank2)
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#R> [1] 0.32158497 0.29209723 0.14289132 0.07947881 0.05252849 0.04107461 0.03620671
#R> [8] 0.03413785

# check for approx. equality
all.equal(pagerank, pagerank2)

#R> [1] TRUE

Hence, if you have a directed graph (it might be weighted) an desire a eigenvector-like centrality
measure, the PageRank will do the job.

Appendix

• Lemma 1: The eigenvalues of a square matrix A are found as follows. From (1), we have

Ax = λx =⇒ (A− λI)x = 0

for a eigen-pair of A (the symbol =⇒ means “implies”). This shows that (A− λI) cannot
have an inverse, since if it were invertible we would conclude that x = (A − λI)−10 = 0,
contradicting the definition of eigenvectors as nonzero vectors. Hence, (A − λI) must be
singular implying that

det(A− λI) = 0.

This defines an nth order polynomial in λ called the characteristic equation. The eigenvalues
of A can be found by finding all values of λ that satisfy this equation. In general, the solutions
are not necessarily distinct.

Now, recall that for any square matrix B, det(B) = det(B>). So,

det(A− λI) = det
(
[A− λI]>

)
= det(A> − λI),

since the identity matrix is symmetric. In other words, the characteristic equation for A
and A> identical. And since the eigenvalues are completely determined by the characteristic
equation, the eigenvalues of A and A> must be the same as well.

• Lemma 2: Fix two arbitrary states vi, vj ∈ V . Since P is irreducible, there exist natural
numbers n,m such that p(n)

ij > 0 and p(m)
ji > 0. Let k = n+m. Then, p(k)

ii ≥ p
(n)
ij p

(m)
ji > 0.14

which shows that k is a multiple of gcd(Ti). Now, consider an arbitrary l ∈ Tj and notice that
p

(k+l)
ii > 0, since you can go from vi to vj , move around in a length-l cycle until you come

back to vj , and then move back to vi. Hence, k+ l is a multiple of gdc(Ti) and so is l.15 Thus,
14That is, we take the length-n walk from vi to vj , and then the length-m walk back to vi, which results in a

length-k cycle with positive probability. However, since there might be other length-k cycles starting at vi with higher
probability, p(k)

ii ≥ p
(n)
ij p

(m)
ji .

15Let x = gdc(Ti). Then k = ax and k + l = bx as x divides all elements in Ti. But this implies that
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gcd(Ti) divides all elements in Tj , implying that gdc(Ti) ≤ gdc(Tj). Using the same argument
but interchanging the role of vi and vj , we obtain gdc(Ti) ≥ gdc(Tj), which completes the
proof.

• Corollary 1: Suppose that the graph G contains a cycle C of odd length. Pick any node
in C and call it vi, and let vj be any of its neighbors. As the G is undirected, pij > 0 and
pji > 0, so all even numbers are T (vi). But vi is contained in a cycle of odd length, which
implies that there is at least one odd number in T (vi). Hence, gdcT (vi) = 1.16 Lastly, as the
graph is connected, the Markov chain is irreducible, from which it follows that all nodes (i.e.,
states) have the same period by Lemma 2.

• Lemma 3: Unfortunately, there is no short proof for this lemma :( But it can be considerably
shortened if we accept as a fact the following claim (for a proof, see Lemma 1.27 in Levin et
al. (2008) Markov Chains and Mixing Times, RI: American Mathematical Society):

Let A ⊂ Z+, where Z+ denotes that set of all non-negative integers. If A
is closed under addition and gcd(A) = 1, then A contains all but finitely
many elements of Z+. That is, |B| < n for some integer n < ∞ where
B = Z+ \A.

What is of importance here is the “all but finitely many” in this statement. This implies
that there B has a maximal integer (a maximum will not exist if B is infinite in size). Now,
consider an arbitrary state vi of the Markov chain. As the chain is aperiodic, gcd(Ti) = 1. To
show that Ti is closed under addition, consider n,m ∈ Ti and note that pn+m

ii ≥ pniip
m
ii > 0.

Hence n+m ∈ Ti. By the preceding lemma there are only finitely many non-negative integers
that are not in Ti. Let t(vi) be the largest of them and note that for all t ≥ t(vi) we have
t ∈ Ti. By irreducibility, for all vj ∈ V , there exists an integer r = r(vi, vj) such that prij > 0.
Hence, for t ≥ t(vi) + r, we have p(t)

ij ≥ p
(t−r)
ii p

(r)
ij > 0 (i.e., cycle from vi back to vi, and then

walk from vi to vj). Let t∗(vi) = t(vi) + maxvj∈V r(vi, vj). Then, for all t > t∗(vi), p(t)
ij > 0 for

all vj ∈ V . Lastly, for t ≥ maxvi∈V t
∗(vi), p(t)

ij > 0 for all vi, vj ∈ V . We are done.

• Lemma 4: Let us denote the largest eigenvalue (in magnitude) of P by17

ρ = max {|λ1|, ..., |λn|}.

We want to show that ρ ≤ 1. Let λ be an eigenvalue of P and x its corresponding eigenvector.18

l = (k + l)− k = bx− ax = (b− a)x is a multiple of x as well.
16In fact, we don’t even need all even numbers to be elements of Ti. 2 ∈ Ti will suffice for this argument, since the

gdc between any odd number and 2 must be 1.
17This eigenvalue is called the spectral radius of P.
18In general, λ might be a complex number and x a complex vector. But let us assume that both are real for

simplicity. The exact same proof holds for complex eigen-pairs.
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By definition of eigenvectors and eigenvalues, we have

Px =



∑n
j=1 p1jxj

...∑n
j=1 pijxj

...∑n
j=1 pnjxn


=



λx1
...
λxi
...

λxn


= λx

Let xk be the element of x with largest magnitude. Using the kth row of the equation, we
find that

|λxk| =

∣∣∣∣∣∣
n∑
j=1

pkjxj

∣∣∣∣∣∣ ≤
n∑
j=1

pjk|xj | ≤
n∑
j=1

pjk|xk|

since |xk| ≥ |xj | for all j = 1, 2, ..., n. Now, note that |xk| is a constant and ∑n
j=1 pkj = 1 (we

sum the kth row of the matrix P). Hence, ∑n
j=1 pjk|xk| = |xk|

∑n
j=1 pjk = |xk| and

|λxk| ≤ |xk|.

The result follows from dividing both sides by |xk|.

• Disappointing Result: The proof of this result is actually quite simple. If π is a stationary
distribution, then π> = π>P. So, considering only the jth node, we have πj = ∑n

i=1 πipij .
Recall that pij = aijd(vi)−1. In other words,

1. if (vi, vj) ∈ E—i.e., vi and vj have an edge in the graph G—the (i, j)th entry of the
adjacency matrix is aij = 1 and probability of moving from i to j is pij = aijd(vi)−1 =
d(vi)−1.

2. If (vi, vj) /∈ E, then aij = 0 and so pij = 0

which corresponds with the way we have constructed P. Now notice that the following holds:

n∑
i=1

d(vi)pij =
n∑
i=1

d(vi)
(
aij
d(vi)

)
=

∑
i:(vi,vj)∈E

d(vi)
d(vi)

=
∑

i:(vi,vj)∈E
1 = d(vj). (16)

Since ∑n
i=1 d(vi) = 2|E|, dividing all the degrees by 2|E| turns the degree vector d =

[d(v1), ..., d(vn)]> into a valid probability vector. Hence, dividing both sides of (16), we
conclude that

πj = d(vj)
2|E| , j = 1, 2, ..., n

must be the unique stationary distribution of the Markov Chain on G.

The situation is no different on a weighted graph or weighted network.

Definition (Weighted graph). Let G(V,E) be a graph. A weighted graph, G(V,E,w), is the
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graph G together with a weight function w : V ×V → [0,∞) that is w(vi, vj) = 0 if (vi, vj) /∈ E
and strictly positive otherwise.

So, a weighted graph is nothing but a usual graph with a function w that attaches to each
edge a positive weight.19 Let wij the weight of edge (vi, vj) ∈ E and wi = ∑n

j=1wij . Notice
that wij = wji if (vi, vj) ∈ E and 0 otherwise. The transition probabilities can be then defined
as pij = wij/wi, i.e., given that the random walker is at vi it will move to its neighbors with
probability proportional to the weights of the edges. But then

n∑
i=1

wipij =
n∑
i=1

wi

(
wij
wi

)
= wj

and normalizing both sides by ∑n
i=1wi, we conclude

πj = wj∑n
i=1wi

, j = 1, 2, ..., n,

which shows that the limiting probabilities are proportional to the weight attached to each
node’s edge (sometimes called the node strength.)

19Of course, we can also define a weighted graph with weight functions that can be negative. But it is often the
case that the weights are taken to be non-negative.
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