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Before we start ...

Any questions regarding last class?

!!! WARNING !!!
!!! PLEASE CONSULT YOUR TEXTBOOKS RATHER THAN

USING THESE SLIDES TO STUDY !!!

THE TEXTBOOKS THAT YOU WERE ASSIGNED WENT
THROUGH MANY REVISIONS. SO YOU CAN TRUST THEIR

CONTENT

These slides, on the other hand, were created by a poor GRADUATE STUDENT from
the top of his head !!
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Causal Inference, Basics
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Causal inference with observational studies
I Only the basics in probability:

1. Morgan, S.L. and Winship, C., 2014. Counterfactuals and
Causal Inference. Cambridge University Press.

I A little bit more math:
1. Gelman, A. and Hill, J., 2006. Data Analysis Using Regression

and Multilevel/Hierarchical Models. Cambridge university
press. Chapters 9 and 10.

2. Angrist, J.D. and Pischke, J.S., 2008. Mostly Harmless
Econometrics: An empiricist’s Companion. Princeton
university press.

3. Rosnbaum, p. R., 2010. Design of Observational Studies.
Springer, New York, NY.

4. Rosenbaum, P.R., 2002. Observational studies. Springer, New
York, NY.

5. Athey, S. and Imbens, G. W. 2017. “Econometrics of
Randomized Experiements” Ch. 3 in Handbook of Economic
Field Experiments. Elsevier
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Potential outcomes

I Suppose we have a sample of size n, a treatment variable D,
and an outcome of interest y .

I Let
yi (Di = 0) = y0

i and yi (Di = 1) = y1
i

be the potential outcomes, where
1. y0

i is the outcome if individual i does not receive the
treatment, and

2. y1
i is the outcome if individual i does receive the treatment.

I The (additive) treatment effect for individual i can be thus
represented as

τi = y1
i − y0

i .
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The Fundamental Problem of Causal Inference

I The problem is that y1
i and y0

i can never be observed together:
An individual is either treated or not (never both!), so

1. If i receives the treatment, we observe y1
i

2. if she does not, we observe y0
i

I It follows that τi = y1
i − y0

i cannot be calculated
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Averages?

I What if we think about averages? That is

τ = 1
n

n∑
i=1

(y1
i − y0

i ) = Avg[y1
i − y0

i ]

= Avg[y1
i ]− Avg[y0

i ]
= ȳ1 − ȳ0

which is the definition of the “average treatment effect.” Can
we calculate this quantity?

I No. How can we calculate a function (average) of something
that is not observed?
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What DO we observe?

I We observe

y1
i |Di = 1 OR(!) y0

i |Di = 0

or, more compactly,

yi = Diy1
i + (1− Di )y0

i .

I Further, we observe

τ̂NAIVE = Avg(yi |Di = 1)− Avg(yi |Di = 0)
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What assumptions do we need?

I The crucial question is what do we have to assume such that:

τ = E[τ̂NAIVE ]

since, IF(!) the equality is satisfied, we can estimate τ by
τ̂NAIVE .

I The assumption that have to be met are

1. D ⊥ (y1, y0) (Ignorability of the treatment assignment)
2. SUTVA (stable unit treatement value assumption)
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Ignorability

I The statement
D ⊥ y1, y0

means that the treatment assignment (D) is independent of
the potential outcomes (y1, y0)

I In plain English: the probability of being assigned to the
treatment (or control) group does not depend on what
individuals would do if they were to receive (or not receive)
the treatment
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I Why is this important (in intuitive terms)?

To say that the treatment assignment is independent of the potential
outcomes means that we are sampling randomly individuals (irrespective
of their potential outcomes) into the treatment and the control gropus.
Hence, the distribution of potential outcomes, y 1 , of individuals in the
treatment group (which we observe) will be “representative” of the
distribution of the potential outcomes y 1 of individuals in the control
group (which we do not observe). It follows that average response of the
treatment group will be a “typical” response of the individuals in both the
treatment and the control group. The same goes for the control group
and the distribution of y 0. To say that the treatment assignment does
depend on the potential outcomes, on the other hand, means that the
distribution of y 1 differs between the treatment and the control group.
Thus, the distribution of y 1 in the treatment group (which we observe) is
no longer representative of the distribution of y 1 in the control group
(which we do not observe). So there is no way to make valid inference
regarding the average response of the control group under the
counterfactual scenario in which they had received the treatment
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I Recall we want to estimate τ from τ̂NAIVE . This means we
want to estimate{

Avg(y1
i )−Avg(y0

i )
}

with
{

Avg(yi |Di = 1)−Avg(yi |Di = 0)
}

I Thus, we would like to estimate Avg(y1
i ) with Avg(yi |Di = 1)

(and of course Avg(y 0
i ) with Avg(yi |Di = 0)).

I The first is an average over all individuals, while the second is
an average over only those who have actually received the
treatment, so they are different (!)

I To proceed, let us decompose Avg(y1
i ) into

Avg(y1
i ) = πAvg(y1

i |Di = 1)︸ ︷︷ ︸
observable

+(1− π) Avg(y1
i |Di = 0)︸ ︷︷ ︸

unobservable

,

where π = Prop[Di = 1].
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I IF
Avg(y1

i |Di = 1) = Avg(y1
i |Di = 0)

THEN

Avg(y1
i ) = πAvg(y1

i |Di = 1) + (1− π)Avg(y1
i |Di = 0)

= πAvg(y1
i |Di = 1) + (1− π)Avg(y1

i |Di = 1)
= Avg(y1

i |Di = 1)

I That is, if the equality is satisfied, the average outcome of all
individuals had they received the treatment is equal to the
average outcome of those who actually received the treatment



Causal Inference, Basics Propensity Scores

I Of course, in most situations,

Avg(y1
i |Di = 1) 6= Avg(y1

i |Di = 0)

I However, if D ⊥ (y1, y0), then

E[Avg(y1
i |Di = 1)] = E[Avg(y1

i |Di = 0)],

i.e., the average potential outcomes are, in expectation, equal.
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Why (only for the curious) ?

Suppose D ⊥ (y1, y0), and let m be the number of treated individuals,
then

E[Avg(y1
i |Di = 1)] = E

[
1
m

n∑
i=1

y1
i Di

]
= 1

m

n∑
i=1

E
[
y1

i Di
]

= 1
m

n∑
i=1

E[y1
i ]E[Di ] = 1

n

n∑
i=1

E[y1
i ]

= 1
n −m

n∑
i=1

E[y1
i ]E[1− Di ]

= E
[

1
n −m

n∑
i=1

y1
i (1− Di )

]
= E[Avg(y1

i |Di = 0)].

It doesn’t matter whether y1, y0 are random or fixed; if we treat them as
fixed, the only random source is D, so E[y1

i ] is simply y1
i .
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I Thus, if D ⊥ (y1, y0), we have

E[Avg(y1
i |Di = 1)] = Avg(y1

i )

and, by symmetry,

E[Avg(y0
i |Di = 0)] = Avg(y0

i )

I Therefore, we can estimate the unobserved (!) with
observables,

E[τNAIVE ] = E[Avg(y1
i |Di = 1)︸ ︷︷ ︸

observable

]− E[Avg(y0
i |Di = 1)︸ ︷︷ ︸

observable

]

= Avg(y1
i )− Avg(y0

i )︸ ︷︷ ︸
unobservable

= τ,

i.e., we have an unbiased estimator of the average treatment
effect (ATE)!
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How to meet the assumption?

I RANDOMIZE THE TREATMENT ASSIGNMENT. If you
randomize the treatment assignment, then, by the design of
the study, the assignment variable D is independent of the
potential outcomes (y1, y0) (and we know this even without
observing the potential outcomes!)

I If randomization is not possible, then ... try to find and
instrument or natural experiment!

I If no instrument is available, then ... try to match ...
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ATE, ATT, ATC
I Consider again the decomposition

Avg(y1
i ) = πAvg(y1

i |Di = 1)︸ ︷︷ ︸
observable

+(1− π) Avg(y1
i |Di = 0)︸ ︷︷ ︸

unobservable
I Similarly, we have,

Avg(y0
i ) = πAvg(y0

i |Di = 1)︸ ︷︷ ︸
unobservable

+(1− π) Avg(y0
i |Di = 0)︸ ︷︷ ︸

observable
I The relationship between ATE, ATT, and ATC is simply

ATE = τ = Avg(y1
i )− Avg(y0

i )

= π

(
Avg(y1

i |Di = 1)− Avg(y0
i |Di = 1)︸ ︷︷ ︸

ATT

)

+ (1− π)
(

Avg(y1
i |Di = 0)− Avg(y0

i |Di = 0)︸ ︷︷ ︸
ATC

)
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SUTVA

I Quite everything we have established so far falls apart if
SUTVA (Stable Unit Treatment Value Assumption) is not
satisfied ... (not even the notation is right ... )

I So what is SUTVA?
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I Recall that we have defined the potential outcomes of
individual i as (y0

i , y1
i ).

I This seemingly innocuous representation of potential
outcomes is actually not a “representation” but a model of
the response process

I It assumes that the response of i depends only on whether i
herself receives the treatment or not, regardless of what
treatments are assigned to all other individuals

I This assumption is SUTVA
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Examples of violations of SUTVA

1. If the value of a college degree (D) depends on how many
individuals in the population hold a college degree, SUTVA is
violated

2. If randomly assigning some students within a class to
participate in extracurricular activities affects the outcomes of
not only those who participate (treatment group) but also
those who don’t (control group), SUTVA is violated
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Consequences of violations of SUTVA

I We cannot write the potential outcomes as (y0
i , y1

i ) anymore
I For example, the potential outcome of i receiving the

treatment will differ whether j receives the treatment as well
or not.

I In a two-individual scenario with interference (i.e., violation of
SUTVA), individual i has four potential outcomes:

Dj = 0 Dj = 1
Di = 0 y00

i y01
i

Di = 1 y10
i y11

i

I In a sample of n individuals out of which m receive the
treatment, there are

(n
m
)

potential outcomes for every
individual! (e.g., with n = 20 and m = 10, there are 184,756
potential outcomes for each of the i = 1, 2, ..., n individuals)
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Possible remedies?

1. Isolate individuals (make sure that they don’t interact)
2. Change level of analysis (if SUTVA is violated by students in

classrooms, but classrooms are sampled independently from
different schools, analyze classroom outcomes)

3. Incorporate all the potential outcomes explicitly into your
model (e.g., Aronow & Samii. 2017; Miguel & Kremer. 2004)
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Remarks

I In the literature on causal inference, there is a distinction
between the Sample Average Treatment Effect (SATE) and
the Population Average Treatment Effect (PATE)

I This is because when dealing with inferential statistics of
causal effects, there are two sources of uncertainty:

1. The uncertainty by not being able to observe the potential
outcomes and

2. The uncertainty by analyzing a sample and not the population
I The explanation offered in these slides are for the SATE.

However, under ignorability and SUTVA, the estimator

τNAIVE = Avg(y1
i |Di = 1)︸ ︷︷ ︸

observable

]− E[Avg(y0
i |Di = 0)︸ ︷︷ ︸

observable

is still unbiased for the PATE, given that SUTVA holds
(although the standard errors will be different)
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Propensity Scores
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Matching
I There are, however, many situation in which we cannot assign

the treatment randomly. So what would we do?
I Consider the probability that an individual i receives the

treatment, i.e., Pr[Di = 1].
I This probability will often depend on covariates which are

observed, unobserved, as well as the potential outcomes
(y0

i , y1
i ) (note that we are assuming SUTVA again!)

I For convenience, let us denote by xi the observed covariates,
by ui all unobserved covariates including the potential
outcomes, and let Wi = (xi , ui ) and

πi = Pr[Di = 1|Wi ].

Note: πi is a “representation” not a “model” of the probability of
receiving the treatment. In other words, πi is equal to the true probability
the assignment, since we can always find a ui that makes the equality
true.
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I Now, assume that we know the probability πi for all
individuals, i = 1, 2, ..., n, in our sample

I Then we might find two individuals (i , j) for which πi = πj .
I Suppose further that between i and j only one is treated (and

the other receives the control). What is the probability of this
event?

I It is exactly 1/2.
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Why (only for the curious)?
Suppose we have two individuals i and j for which

Pr[Di = 1|Wi ] = πi = πj = Pr[Dj = 1|Wj ],

i.e., given the observed and unobserved covariates, and their potential
outcomes, the probability that i and j receive the treatment is exactly
equal. Recall that for three events, A,B, and C , we have
Pr(A|B,C) = Pr(A,B|C)/Pr(A|C). Lastly, notice that the condition
that only one of them receives the treatment can be expressed as
Di + Dj = 1 as Di and Dj are either one or zero. So, the probability that
i gets the treatment but j does not is

Pr[Di = 1,Dj = 0|Wi ,Wj ,Di + Dj = 1] = Pr[Di = 1,Dj = 0|Wi ,Wj ]
Pr[Di + Dj = 1|Wi ,Wj ]

= πi (1− πj)
πi (1− πj) + πj(1− πi )

= πi (1− πi )
πi (1− πi ) + πi (1− πi )

= 1
2

as desired.



Causal Inference, Basics Propensity Scores

I In other words, if we can find for each i in the sample a
different individual j so that πi = πj , then we would have a
paired randomized experiment! Within pairs, the treatment
assignment is ignorable (with each one of the pair having a
probability 1/2 of receiving the treatment)!

I There are some problems, however:
1. We don’t know the probabilities πi
2. Actually, we cannot even observe πi ; we only observe Di and xi .

I So, again, what should we do?
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Exact Matching

I As it is reasonable to think that whether Di = 1 or 0 depends
on the covariates xi , we might try to find for each individual i
in our sample another individual j that has exactly the same
covariate profile!

I That is we try to find two individuals (i , j), such that xi = xj ,
and pray that if xi = xj , then ui = uj as well!

I Since, if this is true, then πi = Pr[Di = 1|Wi ] is completely
determined by xi . So, again, we are in the world of a paired
randomized experiment!

I Doing this (except for the prayer) is called exact matching.
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I There is however, again, a problem.
I First, there is no guarantee that xi = xj implies ui = uj . This,

however, cannot be solved unless we have an experiment ...
(so, for the time being let’s ignore this)

I The practical problem is that if we have, for example, 20
covariates (each of which is either zero or one), then there are
over one million different covariate profiles!

I Thus, there will be a lot of individuals for which no match can
be found even when all covariates are binary. If some of the
covariates are continuous, then the number of possible profiles
would be infinite ...

I So, again, what should we do?
I It is for this reason that the idea of propensity scores becomes

important.
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Propensity Scores

I The propensity score for individual i , e(xi ), is simply

e(xi ) = Pr[Di = 1|xi ],

i.e., it is the probability of receiving the treatment given the
observed covariates.

I Note that e(xi ) is, in general, not equal to πi . The former is
defined in terms of observed variables Di and xi , while the
latter is defined in terms of observed and unobserved variables.

I The propensity score will be equal to πi if the treatment
assignment depends ONLY on the observed covariates, i.e.,

if πi = Pr[Di = 1|xi , ui ] = Pr[Di = 1|xi ] then πi = e(xi )

by definition.
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Why caring about propensity scores?

I Balancing property: Treated and control units with the same
propensity scores will have the same distribution of observed
covariates xi .

I This means the following: if you have two individuals, i and j ,
with the same propensity score, e(xi ) = e(xj), then their
covariate-profile might differ, xi 6= xj , but within this pair, the
values of the covariates (xi , xj) will be unrelated to the
treatment assignments (Di ,Dj). Further, if you look over
many pairs matched in this way, the distribution of the
covariates of the treatment and the control group will be
equal.



Causal Inference, Basics Propensity Scores

Why (only for the curious)?
We want to show that Pr[xi |Di = 1, e(xi )] = Pr[xi |Di = 0, e(xi )]. Recall that
E[E[A|B]] = E [A] and E[E[A|B,C ]|C ] = E[A|C ]. Now, as e(xi ) is a function of
xi , fixing xi will fix e(xi ). Thus,

Pr[Di = 1|xi , e(xi )] = Pr[Di = 1|xi ] = e(xi ).

Using this result, we obtain

Pr[Di = 1|e(xi )] = E[Di |e(xi )] = E[E[Di |xi , e(xi )]|e(xi )]
= E[Pr[Di = 1|xi , e(xi )]|e(xi )] = E[e(xi )|e(xi )]
= e(xi ).

Hence,
Pr[Di = 1|xi , e(xi )] = Pr[Di = 1|e(xi )]

which is the definition of Di and xi being conditionally independent given e(xi ).
Thus, we have

xi ⊥ Di |e(xi ) or, equivalently, Pr[xi |Di = 1, e(xi )] = Pr[xi |Di = 0, e(xi )]

implying that the distribution of xi for the group with D = 1 and the group
with D = 0 is equal.
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Remark on Balance

I Using the “right” model to estimate the propensity score,
e(xi ), will lead to estimates which induce good balancing of
the covariates.

I However, randomization will balance the covariates as well
I Furthermore, by design, randomization will not only balance

observed covariates xi , but also all unobserved variables ui
and is thus a much more powerful procedure

I We use propensity scores and check balance precisely because
we want to mimic the scenario of a randomized experiment.

I When using propensity scores, we have to “hope” that the ui ’s
are balanced as well; if you randomize, we “know” that they’ll
be balanced. This is a big difference.
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Causal inference using propensity scores

I Now, IF(!)
πi = Pr[Di |xi , ui ] = Pr[Di |xi ]

then we have
πi = e(xi ).

I Recall if πi = πj for two individuals i 6= j , then, given that
only one of them receives the treatment, the probability of i
receiving it is 1/2. But if the above condition holds, then
πi = e(xi ) and πj = e(xj). Thus, matching on the propensity
scores, e(xi ) and e(xj), will bring us back to the world of a
paired randomized experiment

I In other words, IF the condition holds, then

D ⊥ y0, y1|e(xi )

so we can make valid claims of the causal effect of D on the
outcome y .
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I But even if πi 6= e(xi ) it might be useful to use propensity
scores

I For example, say you have one observed covariate xi . You
might run a regression of the form

yi = α + τDi + βxi + εi

I But, even if xi is the only covariate that needs to be
controlled to render the treatment assignment ignorable, you
might have the wrong functional form, i.e., it might be that
you have to control for x2

i , x4
i , or log(xi ), etc.

I If you use propensity scores, on the other hand, the whole
distribution across the treatment and the control group will be
the same (balancing property), so you won’t misspecify the
functional form
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How to match?

There are many different ways to match individuals after
propensity scores are estimated. For example,

1. stratifying by propensity scores
2. one-to-one matching
3. one-to-many matching
4. many-to-many matching
5. caliper matching
6. kernel matching
7. Mahalanobis distance matching
8. etc...



Causal Inference, Basics Propensity Scores

Weighting by propensity scores

I Another way to use propensity scores is to use them as
weights in regressions

I We weight each observation by the inverse of the propensity
to receive the treatment: if i ’s propensity score is e(xi ) then
the weight for this observation will be

wi =


1

e(xi ) , if Di = 1
1

1−e(xi ) , if Di = 0

I This produces an unbiased estimate of the ATE under the
assumption that

1. the treatment assignment is ignorable conditional on the
propensity scores, and

2. SUTVA holds
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Why (only for the extremely curious)?
Suppose we are interested in the SATE and so the potential outcomes are
fixed. Further, assume that given the propensity scores e(xi ), the
treatment assignment is ignorable. Then, we have

E
[

yiDi
e(xi )

∣∣∣∣xi

]
= 1

e(xi )
E [y1

i Di |xi ] = 1
e(xi )

y1
i E[Di |xi ] = y1

i .

Thus, by the property of iterated expectations, it follows that

E
[

yiDi
e(xi )

]
= y1

i

Similarly,

E
[

yi (1− Di )
1− e(xi )

]
= y0

i .

Thus,

E
[ n∑

i=1

(
yiDi
e(xi )

− yi (1− Di )
1− e(xi )

)]
=

n∑
i=1

(y1
i − y0

i )

i.e., the total difference in the potential outcomes.
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A natural estimator, called the Horvitz-Thompson (HT) estimator, for
the sample average treatment effect would be therefore,

τ̂HT = 1
n

n∑
i=1

(
yiDi
e(xi )

− yi (1− Di )
1− e(xi )

)
.

Note that this estimator is different from the usual Hajek estimator, i.e.,

τ̂H =
∑n

i=1 wi (yiDi − yi (1− Di ))∑n
i=1 wi

where

wi =
{

1
e(xi ) if Di = 1

1
1−e(xi ) if Di = 0

which is used if you specify “survey weights” in a STATA or R (If you
plug-in the weights, you’ll see that the only difference is the denominator
which is n for the HT estimator and

∑
i wi for the Hajek estimator).
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What is their difference? Consider the sum
∑

i y1
i /n, which is estimated

by n−1∑n
i=1

Di yi
e(xi ) when using the HT estimator. We have shown above

that this estimator is unbiased. The Hajek estimator is, on the other
hand, ∑n

i=1 wiDiyi∑n
i=1 wi

=
n∑

i=1

Diyi
e(xi )

/ n∑
i=1

Di
e(xi )

.

We know that the numerator is unbiased for
∑

i y1
i , so let us look at the

denominator for the ith term:

E
[

Di
e(xi )

]
= E

[
E
[

Di
e(xi )

∣∣∣∣xi

]]
= E

[
E[Di |xi ]

e(xi )

]
= 1.

Thus,

E
[ n∑

i=1

Di
e(xi )

]
= n.

The same holds for the untreated units, showing that the denominator of
the Hajek estimator is unbiased for the sample size.
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In short, the Hajek estimator is a ratio of two unbiased estimators. The
problem is that, in general, for two random variables V and W ,

E
[

W
V

]
6= E[W ]

E[V ] .

Thus, in general, the Hajek estimator will be biased. The main reason
STATA uses the Hajek estimator is because it’s sampling variability is
smaller than that of the HT estimator, and the bias in the estimator
tends to be small with a reasonably large sample size.

For example, if e(xi ) is extremely large or small, the HT estimator would
explode: as e(xi )→ 0, then 1/e(xi )→∞; if e(xi )→ 1, on the other
hand, then 1/(1− e(xi ))→∞. Dividing through by the sum of the
weights, therefore, gives the Hajek estimator more stability.
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