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Before We Start ...

I Any questions regarding last class?
I From this Lab onwards, I’ll try to focus more on STATA code

than on the models
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I I’ll try to demonstrate one last formulation of the binary
logistic regression model

I This representation is called the latent variable formulation
of the logistic regression model

I It appears in many textbooks, especially in the derivation of
the probit model

I It will be helpful to understand ordered logistic regression in
an intuitive way
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I Suppose you have a “latent” (i.e., unobserved) outcome y∗

which is continuous
I We assume that this latent variable is generated by the

following equation

y∗ = α + βx + ε∗, ε∗ ∼ Logistic(0,1)

I The “observed” outcome, y , is binary (either zero or one).
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I Lastly, we assume that the latent variable is connected to the
observed response in the following way:

y =
{

1, if y∗ > 0
0, otherwise

I You can think of the value 0 as a “threshold” (as y∗ > 0
returns a 1 for y and y∗ ≤ 0 returns a 0 for y)

I This threshold is also arbitrary (we say, “unidentified”)
because

y∗ > 0 =⇒ α + βx + ε∗ > 0
=⇒ βx + ε∗ > −α

Hence, we could let −α be the “threshold” and say that the
“latent” regression has no constant
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I It turns out that this model is the same model as the logistic
regression we have learned so far!

I The derivation of this result is a little bit technical ...
I So let me convince you that these are the same models by

simulation ..
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Simulation Code

clear all
set seed
set obs 50000

gen x = rnormal()
gen u = runiform()
gen epsilonstar = ln(u/(1-u))
gen ystar = .5 + .8*x + epsilonstar

gen y = 0
replace y = 1 if ystar > 0
logit y x
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Results
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I When it comes to ordered logistic regression, we can use the
same latent variable formulation

I But now, we have not only one threshold (0 in the previous
example) but many thresholds

I For example, with 4 categories, we have

y∗ = α + βx + ε∗

and

y =


1, if y∗ < τ∗

1
2, if τ∗

1 ≤ y∗ < τ∗
2

3, if τ∗
2 ≤ y∗ < τ∗

3
4, if τ∗

3 ≤ y∗

I Note that we have 3 thresholds if there are 4 categories
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Simulation Code

* generate cut-points
gen taustar1 = -3
gen taustar2 = .5
gen taustar3 = 5

* generate outcome (note that we are "replacing")
drop y
gen y = 1
replace y = 2 if ystar > taustar1
replace y = 3 if ystar > taustar2
replace y = 4 if ystar > taustar3

* run logistic regression
ologit y x
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Results

Here are the results:

I Note that we have no constant(!) and all cutpoints are off
by approximately .5 from the specified τ∗

k s (which were
{−3, .5, 5}. Why?
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I Here is why. Consider the inequality

y∗ < τ∗
1

as y∗ = α + βx + ε∗, we have

α + βx + ε∗ < τ∗
1

Subtracting α from both sides yields

βx + ε∗ < τ∗
1 − α

I The left-hand side is y∗ without constant and the right-hand
side is the threshold minus the constant (which is set to .5)

I The same applies to all the other categories
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