Lab 3

Barum Park

Department of Sociology New York University

Feb. 8, 2018

Before We Start ...

- \blacktriangleright Any questions regarding last class?
- \triangleright From this Lab onwards, I'll try to focus more on STATA code than on the models

[Logistic Regression](#page-2-0)

- \blacktriangleright I'll try to demonstrate one last formulation of the binary logistic regression model
- **Fig.** This representation is called the **latent variable formulation** of the logistic regression model
- It appears in many textbooks, especially in the derivation of the probit model
- \triangleright It will be helpful to understand ordered logistic regression in an intuitive way
- ▶ Suppose you have a "latent" (i.e., unobserved) outcome y^* which is continuous
- \triangleright We assume that this latent variable is generated by the following equation

$$
y^* = \alpha + \beta x + \epsilon^*, \quad \epsilon^* \sim \text{Logistic}(0,1)
$$

 \blacktriangleright The "observed" outcome, y, is binary (either zero or one).

 \triangleright Lastly, we assume that the latent variable is connected to the observed response in the following way:

$$
y = \begin{cases} 1, & \text{if } y^* > 0 \\ 0, & \text{otherwise} \end{cases}
$$

- ► You can think of the value 0 as a "threshold" (as $y^* > 0$ returns a 1 for y and $y^* \leq 0$ returns a 0 for y)
- \blacktriangleright This threshold is also arbitrary (we say, "unidentified") because

$$
y^* > 0 \implies \alpha + \beta x + \epsilon^* > 0
$$

$$
\implies \beta x + \epsilon^* > -\alpha
$$

Hence, we could let $-\alpha$ be the "threshold" and say that the "latent" regression has no constant

- It turns out that this model is the same model as the logistic regression we have learned so far!
- \triangleright The derivation of this result is a little bit technical ...
- \triangleright So let me convince you that these are the same models by simulation ..

Simulation Code

```
clear all
set seed
set obs 50000
gen x = rnormal()gen u = runiform()gen epsilonstar = ln(u/(1-u))gen ystar = .5 + .8*x + epsilonstargen y = 0replace y = 1 if ystar > 0logit y x
```
Results

[Ordered Logistic Regression](#page-9-0)

- \triangleright When it comes to ordered logistic regression, we can use the same latent variable formulation
- \triangleright But now, we have not only one threshold (0 in the previous example) but **many** thresholds
- \blacktriangleright For example, with 4 categories, we have

$$
y^* = \alpha + \beta x + \epsilon^*
$$

and

$$
y = \begin{cases} 1, & \text{if } y^* < \tau_1^* \\ 2, & \text{if } \tau_1^* \le y^* < \tau_2^* \\ 3, & \text{if } \tau_2^* \le y^* < \tau_3^* \\ 4, & \text{if } \tau_3^* \le y^* \end{cases}
$$

 \triangleright Note that we have 3 thresholds if there are 4 categories

Simulation Code

ologit y x

```
* generate cut-points
gen taustar1 = -3gen taustar2 = .5gen taustar3 = 5* generate outcome (note that we are "replacing")
drop y
gen y = 1replace y = 2 if ystar > taustar1
replace y = 3 if ystar > taustar2
replace y = 4 if ystar > taustar3
* run logistic regression
```
Results

Here are the results:

▶ Note that we have **no constant(!)** and all cutpoints are off by **approximately .5** from the specified *τ* ∗ k s (which were {−3*, .*5*,* 5}. Why?

 \blacktriangleright Here is why. Consider the inequality

 $y^* < \tau_1^*$

as $y^* = \alpha + \beta x + \epsilon^*$, we have

 $\alpha + \beta x + \epsilon^* < \tau_1^*$

Subtracting *α* from both sides yields

$$
\beta x + \epsilon^* < \tau_1^* - \alpha
$$

- ► The left-hand side is y^{*} without constant and the right-hand side is the threshold minus the constant (**which is set to .5**)
- \blacktriangleright The same applies to all the other categories