Lab 3

Barum Park

Department of Sociology New York University

Feb. 8, 2018

Before We Start ...

- Any questions regarding last class?
- From this Lab onwards, I'll try to focus more on STATA code than on the models

Logistic Regression

- I'll try to demonstrate one last formulation of the binary logistic regression model
- This representation is called the latent variable formulation of the logistic regression model
- It appears in many textbooks, especially in the derivation of the probit model
- It will be helpful to understand ordered logistic regression in an intuitive way

- Suppose you have a "latent" (i.e., unobserved) outcome y* which is continuous
- We assume that this latent variable is generated by the following equation

$$y^* = \alpha + \beta x + \epsilon^*, \quad \epsilon^* \sim \text{Logistic}(0,1)$$

▶ The "observed" outcome, *y*, is binary (either zero or one).

Lastly, we assume that the latent variable is connected to the observed response in the following way:

$$y = egin{cases} 1, & ext{if } y^* > 0 \ 0, & ext{otherwise} \end{cases}$$

- You can think of the value 0 as a "threshold" (as y* > 0 returns a 1 for y and y* ≤ 0 returns a 0 for y)
- This threshold is also arbitrary (we say, "unidentified") because

$$y^* > 0 \implies \alpha + \beta x + \epsilon^* > 0$$
$$\implies \beta x + \epsilon^* > -\alpha$$

Hence, we could let $-\alpha$ be the "threshold" and say that the "latent" regression has no constant

- It turns out that this model is the same model as the logistic regression we have learned so far!
- The derivation of this result is a little bit technical ...
- So let me convince you that these are the same models by simulation ..

Simulation Code

```
clear all
set seed
set obs 50000
gen x = rnormal()
gen u = runiform()
gen epsilonstar = \ln(u/(1-u))
gen ystar = .5 + .8*x + epsilonstar
gen y = 0
replace y = 1 if ystar > 0
logit y x
```

Results

Logistic regression	Number of obs	=	10000
	LR chi2(1)	=	1349.11
	Prob > chi2	=	0.0000
Log likelihood = -6030.4804	Pseudo R2	=	0.1006

У	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
x _cons	.8306022 .486941	.024909 .0221607		0.000	.7817814 .4435069	.8794231 .5303751

Ordered Logistic Regression

- When it comes to ordered logistic regression, we can use the same latent variable formulation
- But now, we have not only one threshold (0 in the previous example) but many thresholds
- For example, with 4 categories, we have

$$\mathbf{y}^* = \alpha + \beta \mathbf{x} + \epsilon^*$$

and

$$y = \begin{cases} 1, & \text{if } y^* < \tau_1^* \\ 2, & \text{if } \tau_1^* \le y^* < \tau_2^* \\ 3, & \text{if } \tau_2^* \le y^* < \tau_3^* \\ 4, & \text{if } \tau_3^* \le y^* \end{cases}$$

Note that we have 3 thresholds if there are 4 categories

Simulation Code

```
* generate cut-points
gen taustar1 = -3
gen taustar2 = .5
gen taustar3 = 5
* generate outcome (note that we are "replacing")
drop y
gen y = 1
replace y = 2 if ystar > taustar1
replace y = 3 if ystar > taustar2
replace y = 4 if ystar > taustar3
* run logistic regression
```

ologit y x

Results

Here are the results:

Ordered logistic regression	Number of obs	=	50000
	LR chi2(1)	=	7086.14
	Prob > chi2	=	0.0000
Log likelihood = -41251.691	Pseudo R2	=	0.0791

У	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
x	. 7995737	.0101209	79.00	0.000	.779737	.8194103
/cut1 /cut2 /cut3	-3.494251 .005631 4.515017	.0241167 .009527 .0380231			-3.541519 0130415 4.440493	-3.446983 .0243035 4.589541

► Note that we have no constant(!) and all cutpoints are off by approximately .5 from the specified \(\tau_k^*\s) (which were {-3, .5, 5}. Why? Here is why. Consider the inequality

 $y^* < \tau_1^*$

as $y^* = \alpha + \beta x + \epsilon^*$, we have

 $\alpha + \beta x + \epsilon^* < \tau_1^*$

Subtracting α from both sides yields

$$\beta x + \epsilon^* < \tau_1^* - \alpha$$

- The left-hand side is y* without constant and the right-hand side is the threshold minus the constant (which is set to .5)
- The same applies to all the other categories