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Before We Start ...

Any questions regarding last class?

!!! WARNING !!!
!!! PLEASE CONSULT YOUR TEXTBOOKS RATHER THAN

USING THESE SLIDES TO STUDY !!!

THE TEXTBOOKS THAT YOU WERE ASSIGNED WENT
THROUGH MANY REVISIONS. SO YOU CAN TRUST THEIR

CONTENT

These slides, on the other hand, were created by a poor GRADUATE STUDENT from
the top of his head !!
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Centering in Regressions with Interactions

I Consider the regression from last class

y = β0 + β1x1 + β2x2 + β12x1x2 + ε

where

y : attitude toward abortion
x1 : female=1, male=0
x2 : political views ∈ {1, 2, ..., 7}

I What is β1 representing?
I What is β2 representing?
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Centering in Regressions with Interactions

I Suppose that the coefficients of the model are as follows:

y = −2− 6x1 − 0.5x2 + 2(x1x2) + ε

I Note that β0 = −2 represents the level of support for abortion
when x2 = 0 and x1 = 0.

I Similarly, β1 = −6 represents the gender gap when x2 = 0.

I The problem is that there is no respondent in our sample for
which x2 = 0!

I Let’s look at a simulated dataset that has these patterns ...
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Centering in Regressions with Interactions
y = −2− 6x1 − 0.5x2 + 2(x1x2) + ε

−12

−10

−8

−6

−4

−2

0

2

4

6

8

0 1 2 3 4 5 6 7
x2

Y

Gender

Male

Female

x1 = 1 =⇒ (-2-6) + (-0.5+2) x2

x1 = 0 =⇒ -2 - 0.5x2



Centering in Regressions with Interactions Logistic Regression Predicted Probabilities Interactions and Polynomials

Centering in Regressions with Interactions
y = −4− 2x1 − 0.5x∗

2 + 2(x1x∗
2 ) + ε
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Logistic Regression
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General Structure of the Logistic Regression Model

I The logistic regression model has the form

ln
( p

1− p

)
= β0 + β1x1 + β2x2 + · · ·+ βkxk

where p = p(x) = E [y | x1, x2, ..., xk ] is the probability that
y = 1 given the values of the predictors.

I Note that
ln(x) = y ⇐⇒ x = ey

We also write ey as exp(y)..
I Thus,

p(x)
1− p(x) = exp(β0 + β1x1 + · · ·+ βkxk).
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Logistic Regression and Odds

In what follows, I will show how exponentiated logistic regression
coefficients translate into odds-ratios, as the question came up in

class.

However ...

I HIGHLY RECOMMEND THAT YOU CONVERT ALL RESULTS FROM
YOUR LOGISTIC REGRESSIONS INTO "PROBABILITIES" NOT

"ODDS-RATIO"S !!
NOT MANY PEOPLE UNDERSTAND WHAT ODDS-RATIOS ARE!!

(EVEN I DON’T UNDERSTAND THEM !!! MIKE PROBABLY DOES ...)

AND EVEN HE USES PLOTS !!!
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Logistic Regression and Odds

I Let us concentrate on a simple model:

ln
( p

1− p

)
= β0 + β1x1.

I By exponentiating both sides, we have

Odds(x1) = p(x1)
1− p(x1) = eβ0+β1x1 = eβ0eβ1x1

I Thus,

Odds(x1 = 0) = eβ0 and Odds(x1 = 1) = eβ0eβ1

I It follows that

OR(x1) = Odds(x1 = 1)
Odds(x1 = 0) = eβ0eβ1

eβ0
= eβ1 .
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Logistic Regression and Odds

I Thus, when we exponentiate the coefficient of a dummy
variable, we get the ratio of the odds for the event that y = 1.

I What do we get when we exponentiate the coefficient of a
continuous variable?

I Let the variable x1 from the above example be continuous,
then

OR(x1) = eβ0eβ1x1

eβ0
= eβ1x1 =

(
eβ1

)x1 = γx1
1 .

so for x1 = 1 we get γ1, for x1 = 2 we get γ2
1 , and so on ...
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Logistic Regression and Odds

I Note that γ1 gets multiplied by γ1 every time x1 increases by
one unit. Thus, we can interpret the coefficient γ1 = eβ1 as
follows:

the model predicts that every unit increase in x1
is associated with an increase/decrease in the
odds that y = 1 by a factor of γ1.

I If γ1 > 1, this means that the odds are increasing and if
γ1 < 1 the odds are decreasing.

I For example, if γ1 = .33 ≈ 1/3, the odds are decreasing by a
factor of 3 for every unit increase in x1 (this means that the
odds are cut into one third); if γ1 = 2, the odds are increasing
by a factor of 2 (this means that the odds are doubled).
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Bonus: Interaction Term? (Do not take this seriously...)

I In a model with an interaction term (both variables are binary)

ln
( p

1− p

)
= β0 + β1x1 + β2x2 + β12x1x2,

what is the interpretation of β12 in terms of odds-ratios?
I

Odds(x1 = 0, x2 = 0) = eβ0 = γ0

Odds(x1 = 1, x2 = 0) = eβ0+β1 = γ0γ1

Odds(x1 = 0, x2 = 1) = eβ0+β2 = γ0γ2

Odds(x1 = 1, x2 = 1) = eβ0+β1+β2+β12 = γ0γ1γ2γ12

so

γ12 = γ0γ1γ2γ12γ0
γ0γ1γ0γ2

= Odds(x1 = 1, x2 = 1)Odds(x1 = 0, x2 = 0)
Odds(x1 = 0, x2 = 1)Odds(x1 = 1, x2 = 0)

I A RATIO OF ODDS RATIOS!!!
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THIS IS WHY YOU SHOULD TRY TO CONVERT LOGISTIC
REGRESSION RESULTS INTO PROBABILITIES !!!
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Predicted Probabilities
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Logistic Regression and Probabilities

I But if not using odds-ratios, what to do?
I We can go one step further and transform predicted logits

into predicted probabilities!
I How?
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I Consider again the simple logistic regression

ln
( p(x1)

1− p(x1)

)
= β0 + β1x1

I By exponentiating both sides, we obtain the odds

p(x1)
1− p(x1) = eβ0+β1x1

I Next, just to make the equations look less complicated, let us
define xb = β0 + β1x1 (this is simply a number!)
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I So far we have that the odds are

Odds(x1) = p(x1)
1− p(x1) = eβ0+β1x1 = exb

I Next, let us do some arithmetics

p(x1)
1− p(x1) = exb

p(x1) = exb[1− p(x1)]
p(x1) = exb − exbp(x1)

p(x1) + exbp(x1) = exb

p(x1)[1 + exb] = exb

p(x1) = exb

1 + exb
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Interpretation
I Actually, we can go one step further!

p(x1) = exb

1 + exb = 1(
1

exb

)
+ 1

= 1
1 + e−xb

= 1
1 + e−(β0+β1x1)

I Note that this is a complicated non-linear function in x1. This
means that interpretations such as “the model predicts that
an unit increase in x1 is associated with a such and such
increase/decrease in p” does not hold anymore!

I These interpretations are only valid on the logit-scale (note
that the equation is linear in its coefficients!)

logit(p) = β0 + β1x1

Here you can say that “a unit increase in x1 is associated with
a β1-unit increase in the the logit.”
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Interpretation

I What should we do ??
I Note that, we can always PLOT! the predicted probabilities

of the model
1. If x1 = 0 the probability that y = 1 is

p(x1 = 0) = 1
1 + e−β0

2. if x1 = 1 the corresponding probability is:

p(x1 = 1) = 1
1 + e−(β0+β1)

I We can thereafter give the reader a visual representation of
the predictions of the model
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Interpretation

I Consider, for example, the following description :

Age was a significant predictor of whether
respondents turn out to vote. The model predicts
that a unit increase in age corresponds to a 40%
increase in the odds of voting.

I How strong is this association? What is the likelihood of a
person of age 45 to vote?
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Interpretation
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Logistic Regression Results

1) Line shows shows predicted probabilities from the logistic regression model
2) jittered points at the top and bottom show the observed data points
3) Fake data, can you see why?
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Interactions

I Next, consider the model from last class

logit(p) = β0 + β1x1 + β2x2 + β12x1x2

where x1 is gender (dummy, 1=female) and x2 is political
views (continuous).

I We know, by now, that the predicted probabilities of the
model are

p(x1, x2) = 1
1 + e−(β0+β1x1+β2x2+β12x1x2)

I By plugging in different values of x1 and x2, we can therefore
plot the predicted probabilities.
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Interpretation

I Again, we start with interpretations in terms of odds :

All predictors in the model, including the
interaction term, were statistically significant.
The model predicts that a unit increase on the
ideological self-placement scale is associated
with an increase in the odds of turning out to
vote by a factor of approximately 6 for women,
while the same increase in ideology corresponds
to a decrease in the odds to vote by
approximately 55 percent for males.

I How likely are women to vote? How likely are men, who
identify as extremely liberal,to vote?
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Interpretation
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Logistic Regression Results

1) Line shows shows predicted probabilities from the logistic regression model
2) jittered points at the top and bottom show the observed data points
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Interactions and Polynomials
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I Lastly, let us look at polynomial regressions. Here we focus on
the linear model, but everything will carry over to logistic
regression (as the regression of the logit on the predictors is a
linear model)

I Consider the polynomial regression

y = β0 + β1x1 + β2x2
1 + ε

I Say that β1 > 0 and β2 < 0. What does this imply?
I When does the regression line hit its highest prediction?
I Both depend on the relative size of the coefficients and the

distribution of x1! Just plot it!
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y = 10 + .4x − .5x^2, x~N(3,1) y = 10 + .4x − .5x^2, x~N(6,1)

y = 10 + .4x − .25x^2, x~N(3,1) y = 10 + .4x − .25x^2, x~N(6,1)
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I What if we have a polynomial and an interaction term? For
example, consider

E [y |x , z ] = β0 + β1x + β2x2 + β3z + β4xz + β5x2z
where y is income (continuous) x is age (also continuous) and
z is a gender (female=1, dummy). How would you interpret
this equation?

I First way: gather terms
y = β0 + (β1 + β4z)x + (β2 + β5z)x2 + ε

Now,
E [y |x , z = 0] = β0 + β1x + β2x2

E [y |x , z = 1] = (β0 + β3) + (β1 + β4)x + (β2 + β5)x2

I Thus, the regression curve for both males and females follow a
quadratic trend, but the lines might differ to the extend that
β4 and β5 deviate from zero

I But, again, the equation per se gives us not a good sense of
how this curve looks like, so we have to PLOT THEM
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