
FINAL LAB

Barum Park

Department of Sociology
New York University

Apr. 10, 2018



Before we start ...

Any questions regarding last class?

!!! WARNING !!!
!!! PLEASE CONSULT YOUR TEXTBOOKS RATHER THAN

USING THESE SLIDES TO STUDY !!!

THE TEXTBOOKS THAT YOU WERE ASSIGNED WENT
THROUGH MANY REVISIONS. SO YOU CAN TRUST THEIR

CONTENT

These slides, on the other hand, were created by a poor GRADUATE STUDENT from
the top of his head !!

What follows will be quite technical. I couldn’t find a better way
to explain it. Please bear with me and interrupt me as often as

possible.



The Problem of Variance in Logit/Probit Models

I Both Logit and Probit models can represented using a latent
variable formulation:

y∗i = α + βxi + ε∗i

yi =
{

1, if y∗i > τ

0, otherwise

I Here y∗ is a latent variable which we do not observe, τ is a
threshold parameter determining when a value of y∗i leads to
an observed value of yi = 1, and ε∗i is the error term of the
latent regression

I If we assume that ε∗i ∼ Normal(0, σ), we obtain the Probit
model; if we assume ε∗i ∼ Logistic(0, σ), we obtain the Logit
model.



What are we estimating?

Let us consider the probit model and let Φ be the cumulative
distribution function of a standard Normal variable. Then we have

Pr[yi = 1] = Pr[y∗i > τ ] = Pr[α + βxi + ε∗i > τ ]
= Pr[ε∗i > τ − α− βxi ]
= 1− Pr[ε∗i ≤ τ − α− βxi ]

= 1− Pr
[
ε∗i
σ
≤ τ − α− βxi

σ

]
= 1− Φ

(
τ − α− βxi

σ

)
= Φ

(
α− τ + βxi

σ

)



I This leads to

Φ−1(pi ) =
[
α− τ
σ

]
+
[
β

σ

]
xi

where Φ−1 is the inverse cumulative distribution function of
the standard Normal distribution and pi = Pr[yi = 1].

I Had we assumed ε∗ ∼ Logistic(0,1), all that would have
changed is that we have Λ−1 instead of Φ−1, where Λ−1 is the
inverse cumulative distribution function of the standard
Logistic distribution

I Note that
Λ−1(pi ) = log

( pi
1− pi

)
our familiar formula.



What are we estimating? (cont.)

So, we have
Pr[yi = 1] = Φ

(
α− τ
σ

+ β

σ
xi

)
.

I This model is not identified: for example,
I (α = 2, τ = 1) and (α = 3, τ = 2) lead to the same probability
I so does (β = 1, σ = 1) and (β = 100, σ = 100)

I As infinitely many parameter values lead to the exact same
probability, we cannot estimate α, τ, β, σ from the data



Identification of α

Pr[yi = 1] = Φ
(
α− τ
σ

+ β

σ
xi

)

I Given fixed values of σ and β, we can either estimate α by
assuming τ = 0, estimate τ by assuming α = 0, or estimate
the difference α′ = α− τ

I All methods lead to the same predicted probability and are
also “substantively” equivalent, given that the latent variable
does not have a “natural” scale. So, let us use

Pr[yi = 1] = Φ
(
α′

σ
+ β

σ
xi

)
.



Identification of β

I What about β?
I We can identify the ratios α∗ = α′/σ and β∗ = β/σ, which

leads then to

Pr[yi = 1] = Φ (α∗ + β∗xi )

I So, in a strict sense, when running a Logit/Probit in STATA,
we are not estimating (α, β) but (α∗, β∗), and

(α∗, β∗) = (α′, β) if and only if σ = 1

and

(α∗, β∗) = (α, β) if and only if σ = 1 and τ = 0



Summary
I Recall that we started from

y∗i = α + βxi + ε∗i

yi =
{

1, if y∗ > τ

0, otherwise
I We came to the conclusion that we are able to estimate only

α∗ = α′

σ
= α− τ

σ
and β∗ = β

σ
.

I Hence, when we are running logit or probit in STATA, we
are estimating

α∗ and β∗

I And we are estimating

α and β

only if we assume that τ = 0 and σ = 1.



Implications

I In most situations, this is no problem because
1. the “latent” variable has no natural scale and
2. we get the right probabilities, independent of how we

parameterize our model (i.e., whether setting τ = 0 and σ = 1
or not)

I Then why do we care?
I Because problems arise when we want to compare logit/probit

coefficients across different models



Implications (cont.)

I Consider two latent regressions on the same outcome

y∗i = α + βxi + ε∗i

y∗i = α + βxi + γzi + ε∗∗i

I Call the first equation the short one and the second the long
one. Notice that the value of α and β are the same in both
equations

I Let Var(ε∗i ) = σ∗ and Var(ε∗∗i ) = σ∗∗ and note that it must
be the case that σ∗ > σ∗∗

I The intuitive reason is the following: you cannot explain less
variance of your dependent variable by adding more variables.
Accordingly, the residual variance must decrease as you enter
more predictors into your model (given that you keep all the
old ones).1

1This result needs a little bit of linear algebra but is simple. For the curious,
it is proven in the appendix.



Implications (cont.)
I Let us focus on the β coefficient, which is of most interest.
I The important point is that because we are only able to

estimate β/σ and not β directly, it follows we are estimating
in the short regression

β∗ = β

σ∗

and in the long regression

β∗∗ = β

σ∗∗

I But as σ∗ > σ∗∗, our estimates from the short regression will
be consistently smaller in magnitude then the estimates from
our long regression, even if the true parameter values are the
same!

I Thus, to compare coefficients across models, we must ensure
that the latent error variance is the same across models



Proportion Direct “Effect”

I Consider a path model, where x → y , x → z , and z → y .
I Expressing this with equations, where y is binary, we have

y∗i = α0 + α1xi + ε∗i

zi = β0 + β1xi + ξi

y∗i = γ0 + γ1xi + γ2zi + ε∗∗i

I We are interested in the proportion of the “direct effect”
(relative to the “total effect”), which is given as

µ = γ1/α1

I To calculate µ, γ1 and α1 have to be comparable, which we
know they are not, since Var(ε∗i ) 6= Var(ε∗∗i ). What should we
do?



Solution

I The solution lies in deflating Var(εi ) = σ∗, so that σ∗ = σ∗∗,
without changing α1 (where σ∗∗ = Var(ε∗∗i )).

I This can be done by adding variation to xi that is independent
of xi itself

I The intuition is that adding a variable that is uncorrelated
with xi to your model will not change the coefficient of xi
(i.e., α1)2

2Again, for the curious, the proof is in the appendix.



Solution

I Next, consider the regression

zi = β0 + β1xi + ξi

= ẑi + ξi

I We might decompose the variance of zi as

Var(zi ) = Var(ẑi ) + Var(ξi )

where the first term on the right-hand side is the variation of
zi that co-varies with xi and the second term is the variation
of zi that is independent of the variation of xi

I Hence ξi is independent of xi by construction.



I So, let’s add ξi into our model to obtain

y∗i = δ0 + α1x1 + δ2ξi + ν∗i

I Notice that α1 is exactly the the value that appeared in the
regression y∗i = α0 + α1xi + ε∗i .

I The last step is to show that

Var(ν∗i ) = Var(ε∗∗i )

where ε∗∗i is the error term from the regression
y∗i = γ0 + γ1xi + γ2zi + ε∗∗i

I Then we can compare α1 to γ1 in order to calculate
µ = γ1/α1.



I So, let us compare the regressions

y∗i = δ0 + α1xi + δ2ξi + ν∗i

y∗i = γ0 + γ1xi + γ2zi + ε∗∗i

I Now, it must be the case that δ2 = γ2. Intuitively speaking,
this is because the coefficient of predictor, zi , in a multiple
regression of yi on zi and xi can be obtained by 1)
residualizing zi with respect to xi and 2) running a regression
of y on the residualized version of zi (recall the venn diagram
I’ve shown you in an old lab).

I As ξi is the residualized version of zi and xi uncorrelated with
ξi , the coefficients γ2 and δ2 have to be the same.3

3Again, see appendix.



I This leads to

y∗i = δ0 + α1xi + γ2ξi + ν∗i

y∗i = γ0 + γ1xi + γ2zi + ε∗∗i

I Now notice that α1 is the coefficient from the regression
y∗i = α0 + α1xi + ε∗i . It represents, thus, the “total” effect of
xi on y∗i . But we can decompose this total effect into a
“direct” and “indirect” effect

I It turns out that4

α1 = γ1 + β1γ2

I Substituting this into the first equation, we obtain

α1xi + γ2ξi = (γ1 + β1γ2)xi + γ2(zi − β1xi )
= γ1xi + γ2zi

Implying that Var(δ0 + α1xi + γ2ξ) = Var(γ0 + γ1xi + γ2zi ).
As Var(y∗i ) is fixed, it follows that Var(ν∗i ) = Var(ε∗∗i ).

4Again, a heuristic proof is in appendix



I In other words, because Var(ν∗i ) = Var(ε∗∗i ) = σ2, the
regression coefficients that we are estimating in the two
equations are

α∗1 = α1
σ
, γ∗2 = γ2

σ

in the first equation and

γ∗1 = γ1
σ
, γ∗2 = γ2

σ

in the second equation.
I The important point is that we are dividing all of these

coefficients by the same constant. Thus,

γ∗1
α∗1

= γ1/σ

α1/σ
= γ1
α1

= µ

Done.



Summary

I To summarize, when fitting logit/probit models, regression
coefficients cannot be directly compared because the residual
variance of the latent regression changes when different
variables are added to the model.

I To compare how the coefficient of xi changes when zi is
added to the model, we have to make sure that the residual
variance is equal when regressing y on x and when regressing
y on x and z

I This can be done with the following procedure:
1. regress zi on xi to obtain the residuals ξi
2. Run a logit/probit regression of yi on xi and ξi (this is the

“total effect”)
3. Run a logit/probit regression of yi on xi and zi (this is the

“direct effect”)
4. Compare the coefficients of xi in 2. and 3.



Appendix: Why does residual variance decline when adding
variables?

Consider two regressions

y = Xβ + ε and y = Xβ + zγ + u

Then,

u′u = (y − Xβ − zγ)′(y − Xβ − zγ)
= y ′y − 2y ′Xβ − 2y ′zγ + β′X ′Xβ + 2β′X ′zγ + γ2z ′z
= ε′ε− 2y ′zγ + 2β′X ′zγ + γ2z ′z

= ε′ε− γz ′
(

2(y − Xβ − γz) + γz
)

= ε′ε− 2γz ′u − γ2z ′z
= ε′ε− γ2z ′z
≤ ε′ε

Thus the residual variance can only get smaller when we add more
variables to a regression. It will not change if either γ = 0 or Var(z) = 0.



Appendix: Why is the regression coefficient the same when
adding uncorrelated variable?

Consider the regression
y = Xβ + ε = X1β1 + X2β2 + ε

where the set of variables X1 and X2 are orthogonal to one another. The
normal equations are given as[

X ′1X1 X ′1X2
X ′2X1 X ′2X2

][
β1
β2

]
=
[

X ′1y
X ′2y

]
Using only the second equation, we get

X ′1X1β1 + X ′1X2β2 = X ′1y
and solving for β1, we obtain

β1 = (X ′1X1)−1(X ′1y − X ′1X2β2)
If the X1 and X2 are orthogonal (uncorrelated) X ′1X2 = 0. Hence the second
term in the parentheses disappears and we get

β1 = (X ′1X1)−1X ′1y
which is the least-squares estimator for β1 when running a regression of y on
X1.



Appendix: Frisch-Waugh Theorem
Again, consider the regression Consider the regression with normal equations

y = Xβ + ε = X1β1 + X2β2 + ε,

[
X ′1X1 X ′1X2
X ′2X1 X ′2X2

][
β1
β2

]
=
[

X ′1y
X ′2y

]
Recall from the last appendix that β1 = (X ′1X1)−1(X ′1y − X ′1X2β2). The second
set of the normal equations leads to X ′2X1β1 + X ′2X2β2 = X ′2y . Substituting β1
in to this second equation gives

β2 = (X ′2M1X2)−1(X ′2M1y),

where M1 = I − X1(X ′1X1)−1X ′1 which is often called the “residual maker”
matrix as M1y = y − X1β1 = e1, which is the vector of residuals that are
generated by regressing y on X1 (without including X2 in the model). As M1 is
idempotent (meaning that M1M1 = M1) and symmetric, we have

β2 = (X̃ ′2X̃2)−1X̃ ′2ỹ

where X̃2 = MX2 and ỹ = M2y , implying that the regression coefficients, β2,
from a multiple regression of y on X1 and X2 is equal to the vector regression
coefficients obtained when the X1-residualized y (i.e., ỹ) is regressed on
X1-residualized X2. Note that by the properties of M1, the step of residualizing
y can be omitted.



Appendix: Decomposition of total into net and direct
“effects”

A heuristic “proof.” Assume without loss of generality that all variables that
appear below are mean centered, so that E [xy ] = Cov(x , y) and
E [x2] = Var(x). Now, consider the set of equations:

y = βx + ε

z = γx + ν

y = δx + λz + µ,

where ε, ν, µ are error-terms with E [ε] = E [ν] = E [µ] = 0.
Multiplying through by x for all equations and taking expectations, we obtain

Cov(x , y) = βVar(x)
Cov(x , z) = γVar(x)
Cov(x , y) = δVar(x) + λCov(x , z) = δVar(x) + λγVar(x)

= (δ + λγ)Var(x)

It follows that β = (δ + λγ).


