Lab 1

Barum Park

Department of Sociology New York University

Jan. 25, 2018

Announcements

1. Office Hours:

Christina Nelson Mondays 13:00-15:00 Puck Building Barum Park Thursdays 13:00-15:00 Puck Building

2. Lost purple water bottle?

Any questions regarding the last class?

Please interrupt me with questions AS OFTEN AS YOU CAN

The lab will be hold in STATA

Any questions regarding the last class?

Please interrupt me with questions AS OFTEN AS YOU CAN

The lab will be hold in STATA

Any questions regarding the last class?

- Please interrupt me with questions AS OFTEN AS YOU CAN
- The lab will be hold in STATA

- Any questions regarding the last class?
- Please interrupt me with questions AS OFTEN AS YOU CAN
- The lab will be hold in STATA

!!! WARNING !!!

!!! PLEASE CONSULT YOUR TEXTBOOKS RATHER THAN USING THESE SLIDES TO STUDY !!!

THE TEXTBOOKS THAT YOU WERE ASSIGNED WENT THROUGH MANY REVISIONS. SO YOU CAN TRUST THEIR CONTENT

These slides, on the other hand, were created by a poor GRADUATE STUDENT from the top of his head !!

Consider the (population) regression equation from last class

 $NONE = \beta_0 + \beta_1 RONE + \epsilon$

where

$$NONE = \begin{cases} 1, & \text{no religious preference} \\ 0, & \text{otherwise} \end{cases}$$
$$RONE = \begin{cases} 1 & \text{raised with no religion} \\ 0 & \text{otherwise} \end{cases}$$

Consider the (population) regression equation from last class

 $NONE = \beta_0 + \beta_1 RONE + \epsilon$

• We assume that $E[\epsilon | RONE] = 0$.

The assumption implies that

 $E[NONE|RONE] = \beta_0 + \beta_1 RONE$

Consider the (population) regression equation from last class

 $NONE = \beta_0 + \beta_1 RONE + \epsilon$

► We assume that E[e | RONE] = 0. Q. What is the meaning of this assumption? What is the difference between E[e] and E[e | RONE]?

The assumption implies that

 $E[NONE|RONE] = \beta_0 + \beta_1 RONE$

Consider the (population) regression equation from last class

 $NONE = \beta_0 + \beta_1 RONE + \epsilon$

• We assume that $E[\epsilon | RONE] = 0$.

The assumption implies that

 $E[NONE|RONE] = \beta_0 + \beta_1 RONE$

Consider the (population) regression equation from last class

 $NONE = \beta_0 + \beta_1 RONE + \epsilon$

• We assume that $E[\epsilon | RONE] = 0$.

The assumption implies that

$$E[NONE|RONE] = \beta_0 + \beta_1 RONE$$

Q. As NONE is a dummy variable...What is E[NONE]?

Consider the (population) regression equation from last class

 $NONE = \beta_0 + \beta_1 RONE + \epsilon$

• We assume that $E[\epsilon | RONE] = 0$.

The assumption implies that

 $E[NONE|RONE] = \beta_0 + \beta_1 RONE$

Q. What does β_0 represent?

Consider the (population) regression equation from last class

 $NONE = \beta_0 + \beta_1 RONE + \epsilon$

• We assume that $E[\epsilon | RONE] = 0$.

The assumption implies that

 $E[NONE|RONE] = \beta_0 + \beta_1 RONE$

Q. What does β_1 represent?

Consider the (population) regression equation from last class

 $NONE = \beta_0 + \beta_1 RONE + \epsilon$

• Yes! $E[NONE|RONE = 0] = \beta_0 + \beta_1 \times 0 = \beta_0$ and $E[NONE|RONE = 1] = \beta_0 + \beta_1 \times 1 = \beta_0 + \beta_1$

SO

 $E[NONE|RONE = 1] - E[NONE|RONE = 0] = \beta_1$

► Next, consider the regression equation

$$\textit{NONE} = \beta_0 + \beta_1 \textit{RONE} + \beta_2 \textit{FEMALE} + \epsilon$$

where we, again, assume that $E[\epsilon | RONE, FEMALE] = 0$.

Next, consider the regression equation

```
\textit{NONE} = \beta_0 + \beta_1 \textit{RONE} + \beta_2 \textit{FEMALE} + \epsilon
```

where we, again, assume that $E[\epsilon | RONE, FEMALE] = 0$. Q. What does β_0 represent now?

Next, consider the regression equation

 $NONE = \beta_0 + \beta_1 RONE + \beta_2 FEMALE + \epsilon$

where we, again, assume that $E[\epsilon|RONE, FEMALE] = 0$. Q. According to the equation, what is the proportion of NONEs among women who were raised with no religion?

Next, consider the regression equation

$$NONE = \beta_0 + \beta_1 RONE + \beta_2 FEMALE + \epsilon$$

where we, again, assume that $E[\epsilon|RONE, FEMALE] = 0$. Q. According to the equation, what is the proportion of NONEs among women who were raised with no religion? Indeed,

 $E[NONE|RONE = 1, FEMALE = 1] = \beta_0 + \beta_1 + \beta_2$

Next, consider the regression equation

 $NONE = \beta_0 + \beta_1 RONE + \beta_2 FEMALE + \epsilon$

where we, again, assume that $E[\epsilon | RONE, FEMALE] = 0$.

Notice that this model assumes that the difference in the proportion of NONEs between women (*FEMALE* = 1) and men (*FEMALE* = 0) does not depend on *RONE*.

Next, consider the regression equation

 $NONE = \beta_0 + \beta_1 RONE + \beta_2 FEMALE + \epsilon$

where we, again, assume that $E[\epsilon | RONE, FEMALE] = 0$.

Notice that this model assumes that the difference in the proportion of NONEs between women (*FEMALE* = 1) and men (*FEMALE* = 0) does not depend on *RONE*. Q. Why?

Next, consider the regression equation

```
NONE = \beta_0 + \beta_1 RONE + \beta_2 FEMALE + \epsilon
```

where we, again, assume that $E[\epsilon | RONE, FEMALE] = 0$. This is because

 $\underbrace{E[NONE|RONE, FEMALE = 1]}_{\text{Proportion of nones among women}} - \underbrace{E[NONE|RONE, FEMALE = 0]}_{\text{Proportion of nones among men}}$ $= (\beta_0 + \beta_1 RONE + \beta_2) - (\beta_0 + \beta_1 RONE)$ $= (\beta_0 - \beta_0) + (\beta_1 RONE - \beta_1 RONE) + \beta_2$ $= \beta_2$

regardless of whether RONE = 1 or $RONE = 0.^{1}$

¹The description in the underbraces is actually not correct as we need to "integrate out" *RONE* in order to obtain the proportion of nones among women, i.e., E[NONE|FEMALE = 1]. Yet, the conclusion that the difference between men and women does not depend on *RONE* is correct.

Next, consider the regression equation

```
NONE = \beta_0 + \beta_1 RONE + \beta_2 FEMALE + \epsilon
```

where we, again, assume that $E[\epsilon | RONE, FEMALE] = 0$.

Is this assumption plausible?

If not, what can we do about it?

Next, consider the regression equation

 $NONE = \beta_0 + \beta_1 RONE + \beta_2 FEMALE + \epsilon$

where we, again, assume that $E[\epsilon | RONE, FEMALE] = 0$. Is this assumption plausible?

If not, what can we do about it?

We add an interaction term!

 $NONE = \beta_0 + \beta_1 RONE + \beta_2 FEMALE + \beta_{12} (RONE \times FEMALE) + \epsilon$

We add an interaction term!

 $NONE = \beta_0 + \beta_1 RONE + \beta_2 FEMALE + \beta_{12} (RONE \times FEMALE) + \epsilon$

Now, we have

 $E[NONE|RONE, FEMALE] = \beta_0 + \beta_1 RONE + \underbrace{(\beta_2 + \beta_{12} RONE)}_{\text{coefficient of FEMALE}} \times FEMALE$

so that the difference in the proportions of Nones between men and women depend on *RONE*.

We add an interaction term!

 $NONE = \beta_0 + \beta_1 RONE + \beta_2 FEMALE + \beta_{12} (RONE \times FEMALE) + \epsilon$

Q. What does β_0 represent?

We add an interaction term!

 $NONE = \beta_0 + \beta_1 RONE + \beta_2 FEMALE + \beta_{12} (RONE \times FEMALE) + \epsilon$

Q. What is the proportion of Nones among women raised in a religious family?

We add an interaction term!

 $NONE = \beta_0 + \beta_1 RONE + \beta_2 FEMALE + \beta_{12} (RONE \times FEMALE) + \epsilon$

Q. What is the proportion of Nones among women raised in a religious family?

 $E[NONE|RONE = 0, FEMALE = 1] = \beta_0 + \beta_2$

We add an interaction term!

 $NONE = \beta_0 + \beta_1 RONE + \beta_2 FEMALE + \beta_{12} (RONE \times FEMALE) + \epsilon$

In fact, with the interaction model, we can express the proportion of Nones within each cell of the following cross-table in terms of the regression coefficients:

	RONE=0	RONE=1
FEMALE=0	β_0	$\beta_0 + \beta_1$
FEMALE=1	$\beta_0 + \beta_2$	$\beta_0 + \beta_1 + \beta_2 + \beta_{12}$

Clearly, we do not observe the population but have to estimate the parameters from a sample

Suppose we have a simple random sample of size n for these variables. The data would look like this:

NONE ₁	$RONE_1$	$FEMALE_1$	0	1	1
$NONE_2$	$RONE_2$	$FEMALE_2$	1	1	
NONEn	$RONE_n$	FEMALE _n	1		0

and we would use the model

 $None_i = \hat{\beta}_0 + \hat{\beta}_1 Rone_i + \hat{\beta}_2 Female_i + \hat{\beta}_{12} (Female_i \times Rone_i) + e_i$ to estimate β_0 , β_1 , β_2 , and β_{12} .

- Clearly, we do not observe the population but have to estimate the parameters from a sample
- Suppose we have a simple random sample of size n for these variables. The data would look like this:

$NONE_1$	$RONE_1$	FEMALE ₁		0	1	1]
$NONE_2$	$RONE_2$	$FEMALE_2$		1	1	0
÷	:	÷	=	:	÷	÷
NONEn	$RONE_n$	FEMALEn		1	0	0

and we would use the model

 $None_i = \hat{\beta}_0 + \hat{\beta}_1 Rone_i + \hat{\beta}_2 Female_i + \hat{\beta}_{12} (Female_i \times Rone_i) + e_i$

to estimate β_0 , β_1 , β_2 , and β_{12} .

- Clearly, we do not observe the population but have to estimate the parameters from a sample
- Suppose we have a simple random sample of size n for these variables. The data would look like this:

NONE ₁	$RONE_1$	FEMALE ₁		0	1	1]
$NONE_2$	$RONE_2$	$FEMALE_2$		1	1	0
:	:	:	=	:	:	:
NONE _n	RONE _n	FEMALE _n		1	0	0

and we would use the model

 $None_i = \hat{\beta}_0 + \hat{\beta}_1 Rone_i + \hat{\beta}_2 Female_i + \hat{\beta}_{12} (Female_i \times Rone_i) + e_i$

to estimate β_0 , β_1 , β_2 , and β_{12} .

Recall that in the population the following relationship holds:

	RONE=0	RONE=1
FEMALE=0	β_0	$\beta_0 + \beta_1$
FEMALE=1	$\beta_0 + \beta_2$	$\beta_0 + \beta_1 + \beta_2 + \beta_{12}$

where each cell of the table is the proportion of Nones expressed in regression coefficients

It turns out that the OLS estimator satisfies

	RONE=0	RONE=1
FEMALE=0	$\hat{\beta}_0$	$\hat{eta}_0+\hat{eta}_1$
FEMALE=1	$\hat{\beta}_0 + \hat{\beta}_2$	$\hat{\beta}_0 + \hat{\beta}_1 + \hat{\beta}_2 + \hat{\beta}_{12}$

where, now, the cells are the sample proportions of Nones within each category (we will discuss this further in the STATA session).

Recall that in the population the following relationship holds:

	RONE=0	RONE=1
FEMALE=0	β_0	$\beta_0 + \beta_1$
FEMALE=1	$\beta_0 + \beta_2$	$\beta_0 + \beta_1 + \beta_2 + \beta_{12}$

where each cell of the table is the proportion of Nones expressed in regression coefficients

It turns out that the OLS estimator satisfies

	RONE=0	RONE=1
FEMALE=0	$\hat{\beta}_{0}$	$\hat{eta}_0 + \hat{eta}_1$
FEMALE=1	$\hat{\beta}_0 + \hat{\beta}_2$	$\hat{\beta}_0 + \hat{\beta}_1 + \hat{\beta}_2 + \hat{\beta}_{12}$

where, now, the cells are the sample proportions of Nones within each category (we will discuss this further in the STATA session).

► What is a "logit"?

What is an "odds-ratio"?

▶ The connection between them is

 $logit(p_1) - logit(p_2) = ln [OR(p_1, p_2)].$

$$logit(p) = logged-odds(p) = ln\left(\frac{p}{1-p}\right)$$

What is an "odds-ratio"?

▶ The connection between them is

 $logit(p_1) - logit(p_2) = ln [OR(p_1, p_2)].$

$$logit(p) = logged-odds(p) = ln\left(\frac{p}{1-p}\right)$$

▶ The connection between them is

$$logit(p_1) - logit(p_2) = ln [OR(p_1, p_2)].$$

$$logit(p) = logged-odds(p) = ln\left(\frac{p}{1-p}\right)$$

What is an "odds-ratio"? Suppose you have two probabilities p₁ and p₂, then their odds-ratio is

$$OR(p_1, p_2) = \left(\frac{p_1}{1-p_1}\right) \left/ \left(\frac{p_2}{1-p_2}\right)\right.$$

$$logit(p_1) - logit(p_2) = ln [OR(p_1, p_2)].$$

$$logit(p) = logged-odds(p) = ln\left(\frac{p}{1-p}\right)$$

What is an "odds-ratio"? Suppose you have two probabilities p₁ and p₂, then their odds-ratio is

$$OR(p_1, p_2) = \left(\frac{p_1}{1-p_1}\right) \middle/ \left(\frac{p_2}{1-p_2}\right)$$

The connection between them is

$$logit(p_1) - logit(p_2) = ln [OR(p_1, p_2)].$$

Tables and Regression

Modeling Odds?

Logistic Regression

 Logistic regression (next week) models conditional probabilities/proportions as

$$\ln\left(\frac{p}{1-p}\right) = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_k x_k,$$

where p = E[y|x₁, x₂, ..., x_k] and y is a dummy variable.
▶ If there is only one predictor, x₁, which is dummy-coded, then

$$x_1 = 0 \implies \text{logit}(p_0) = \beta_0$$

 $x_1 = 1 \implies \text{logit}(p_1) = \beta_0 + \beta_1$

and

$$\beta_1 = \operatorname{logit}(p_1) - \operatorname{logit}(p_0) = \ln[OR(p_1, p_0)]$$

Logistic Regression

 Logistic regression (next week) models conditional probabilities/proportions as

$$\ln\left(\frac{p}{1-p}\right) = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_k x_k,$$

where $p = E[y|x_1, x_2, ..., x_k]$ and y is a dummy variable.

▶ If there is only one predictor, *x*₁, which is dummy-coded, then

$$egin{array}{lll} x_1=0 \implies {\sf logit}(p_0)=eta_0 \ x_1=1 \implies {\sf logit}(p_1)=eta_0+eta_1 \end{array}$$

and

$$\beta_1 = \mathsf{logit}(p_1) - \mathsf{logit}(p_0) = \mathsf{ln}[\mathit{OR}(p_1, p_0)]$$

Logistic Regression

 Logistic regression (next week) models conditional probabilities/proportions as

$$\ln\left(\frac{p}{1-p}\right) = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_k x_k,$$

where $p = E[y|x_1, x_2, ..., x_k]$ and y is a dummy variable.

• If there is only one predictor, x_1 , which is dummy-coded, then

$$egin{array}{lll} x_1=0 \implies {\sf logit}(p_0)=eta_0 \ x_1=1 \implies {\sf logit}(p_1)=eta_0+eta_1 \end{array}$$

and

$$\beta_1 = \mathsf{logit}(p_1) - \mathsf{logit}(p_0) = \mathsf{ln}[OR(p_1, p_0)]$$

Q.We saw that we can model proportions/probabilities with linear regression, why using "logits"?

Linear Regression?

Let's turn to STATA ...