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Abstract

Mobility scholars are increasingly turning to computational methods to analyze
mobility tables. Most of these approaches start with the detection of mobility
clusters: namely, sets of occupations within which the flow of workers is dense and
across which it is sparse. Yet, clustering is not the only way in which worker flows
can be structured. This paper shows how a degree-corrected stochastic blockmodel
is able to detect patterns of mobility that are more general than clustering and
consistent with the homogeneity criterion laid out by Goodman (1981) as well as
the internal homogeneity thesis proposed by Breiger (1981). Due to the intractable
marginal likelihood of the model, parameters are estimated via a variational Ex-
pectation Maximization algorithm. Simulation results suggest that the estimation
algorithm successfully recovers (conditionally) stochastically equivalent mobility
classes Further, the analysis of two real-world examples shows that the model is
able to detect meaningful mobility patterns, even in situations where commonly
used community detection algorithms fail.
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Introduction

Sociologists are increasingly turning to computational methods to detect structure in

mobility tables. Many of these new approaches treat the mobility table as a weighted

network, where occupations are represented as nodes and the amount of worker flow

between them as weighted edges. This reconceptualization has enabled researchers

to apply recent developments in clustering and community detection algorithms to

mobility tables, pushing forward the boundaries of mobility research (Schmutte 2014;

Melamed 2015; Toubøl and Larsen 2017; Cheng and Park 2020; Lin and Hung 2022).

Notwithstanding their merits, however, the exclusive focus on within- versus between-

cluster density of these approaches overlooks alternative ways in which mobility can be

structured (but see, Block et al. 2022). Indeed, clustering is agnostic to the concrete

pattern of worker flow across clusters as long as the intra-cluster density is high enough

and, hence, stops halfway before arriving at what network scholars have traditionally

regarded as “positions” within the web of connections (White et al. 1976).

In this paper, I use a degree-corrected stochastic blockmodel (DCSBM) as an alter-

native approach to finding aggregation schemes from mobility tables. The model can

be understood as a natural extension of the log-linear model (Hout 1983; Agresti 2003)

with discrete latent variables that represent the class membership of occupations. These

classes, in turn, represent conditionally “stochastically equivalent” (Holland et al. 1983)

positions, meaning that occupations belonging to the same class share the same expected

rates of in- and out-flow to all other occupations after adjustments for the marginals and

diagonals of the mobility table. The notion of conditional stochastic equivalence is more

general than that of clustering. Indeed, it can be shown that it subsumes clustering as a

special case. Further, occupations that are conditonally stochastically equivalent satisfy

the “homogeneity” criterion proposed by Goodman (1981) to determine the collapsibil-

ity of occupations into broader categories as well as the “internal homogeneity thesis”

that was used by Breiger (1981) to identify social classes from worker flows. Partitions
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recovered by community detection or clustering algorithms, on the other hand, do not

satisfy these conditions.

While the formulation of DCSBMs is relatively simple, estimating the parameters

of these models is computationally challenging: both the marginal likelihood of the

observation model and the posterior distribution of the latent class memberships are

generally intractable (Snijders and Nowicki 1997). This challenge is overcome by using

a variational Expectation Maximization algorithm (VEM) that maximizes a tractable

lower bound of the marginal log-likelihood to approximate the MLE of the model

parameters (Daudin et al. 2008; Mariadassou et al. 2010). Simulation results show that

the DCSBM fitted via the VEM algorithm is able to successfully recover (conditionally)

stochastically equivalent positions from mobility tables under reasonable conditions.

Further, it converges quickly and can be applied to mobility tables with more than 500

occupations and 10 classes within seconds.

For illustration, the model is fitted to two classical mobility tables: the mobility table

analyzed in Breiger (1981) and the one analyzed in Goodman (1981). Both of these

analyses show that the model is able to detect meaningful patterns of mobility, which

are more general than clustering. Further, in both of these examples, the DCSBM gives

good results, while most of the tested community detection algorithms fail to find any

meaningful structure.

The paper unfolds as follows. First, two criteria that might be used to aggregate occu-

pations based on mobility patterns, namely clustering and equivalence, are discussed and

compared. Thereafter, a degree-corrected stochastic blockmodel is formulated together

with an estimation algorithm that approximates the MLE of the model parameters. This

is followed by a simulation study and two empirical applications. The paper concludes

with a discussion of the results.
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Equivalence and Clustering

Traditional approaches to analyzing mobility tables have relied heavily on log-linear

models. These models assume that each cell count of the mobility table follows a

Poisson distribution with a pre-specified rate parameter (Hout 1983; Agresti 2003). By

constraining the parameter to interpretable patterns and testing the fit of the model to the

data, researchers have been able to reach conclusions regarding the underlying pattern of

occupational mobility in the population. While theoretically appealing, most parsimo-

nious mobility structures—such as models of symmetry or quasi-independence—tend

to fit observed data rather poorly, especially for larger mobility tables (Hauser 1978;

Sobel et al. 1985). Furthermore, recent computational approaches have demonstrated

that the structure of both inter- and intra-generational occupational mobility tends to be

clustered within sets of occupations (Schmutte 2014; Toubøl and Larsen 2017; Cheng

and Park 2020; Lin and Hung 2022), a pattern which is difficult to model with a log-

linear models. Indeed, while “topological” models (Hauser 1978) are able to represent

clustering, they require the researcher to manually specify the regions of homogeneous

mobility flows without knowledge of the data, a task that becomes practically impossible

once the mobility table becomes moderately large (Cheng and Park 2020).

Differently from the log-linear modeling tradition, in which researchers need to

specify a priori a structure that is believed to capture the signal in the mobility table,

recent computational approaches tend to adopt an inductive approach. Motivated by

Weber’s definition of “social class” as “the totality of those class situations within which

individual and generational mobility is easy and typical” (Weber [1922]1978: 302), this

stream of research takes the clustered nature of occupational mobility as a given and

tries to identify the boundaries that separate occupations into classes defined by dense

internal worker flows (Melamed 2015; Toubøl and Larsen 2017; Cheng and Park 2020).

The criterion that these approaches optimize might be called the Clustering Criterion

(CC, hereafter), as it reflects the extent to which the within-class worker flow is dense
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relative to that between classes. It is important to note that the CC does not aim at

identifying regions of cells in the mobility table with homogeneous rates of mobility

as the topological model does, but rather sets of occupations among which the worker

flow is dense. Hence, the CC induces a simultaneous partition of the rows and columns

of the mobility table, enabling the interpretation of the resulting aggregation scheme as

a class structure, while the topological model, in general, does not share this property

(Breiger 1981).

Equivalence vs Subgroups

Although the Clustering Criterion is, perhaps, the most intuitive way to aggregate

occupations into classes, it is not the only one. Indeed, the earliest attempts that took the

“aggregation question” (Breiger 1990: 8) of occupations into classes seriously focused

on what we might call the Equivalence Criterion (EC, hereafter) (but see, Vanneman

1977), which aggregates occupations based on similarity in in- and out-flow patterns. Of

particular relevance to this paper is the “internal homogeneity thesis” of Breiger (1981)

and the “homogeneity” criterion discussed in Goodman (1981). Despite differences

in the concrete model that they preferred, both Breiger and Goodman emphasized the

homogeneity in in- and out-flow patterns between occupations as the major criterion

to aggregate occupations into social classes. In other words, the property that needs

to be shared among occupations in order to belong into the same class is not a high

internal density of worker flow, but whether they send and receive workers at the same

rate from the same occupations. Breiger (1981: 582) expressed this idea by stating that

the class membership of occupations should “explain” the associations in the mobility

table, while Goodman’s homogeneity criterion reflects the same insight in that it requires

origin and destination to be (quasi-) independent conditional on the classes to which

they belong (Goodman 1981).

It is important to note that occupations that share equivalent in- and out-flow patterns
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Figure 1: Illustration of Differences Between the Clustering Criterion and Equivalence
Criterion in Aggregating Occupations into Classes

Clustering Criterion

𝐴 𝐵

Class II Class IIIClass I

Equivalence Criterion

𝐴 𝐵𝐴 𝐵

Class I Class II-A Class II-B Class III

Note: Occupations are denoted by uppercase letters, while classes are represented by circles. Classes
are assumed to contain multiple occupations but only 𝐴 and 𝐵 are highlighted for clarity. The arrows
represent the direction and volume of the worker flow with thicker arrows reflecting higher volumes of
workers.

do not need to have dense flows of workers among themselves, which shows that the

EC is distinct from the CC. Figure 1 illustrates this by showing a scenario where the

two criteria lead different groupings of occupations. The figure shows two occupations,

𝐴 and 𝐵, between which large numbers of workers move. As the worker flow between

the occupations is dense, the CC approach would allocate both into the same class,

regardless of which other occupations 𝐴 and 𝐵 are connected to. The important point

for the CC is that the worker flow between 𝐴 and 𝐵 exceeds that to other occupations

or chance expectations based on the marginals of the mobility table. According to the

EC, on the other hand, 𝐴 and 𝐵 are allocated to separate classes, because 𝐴 (but not

𝐵) sends workers to occupations belonging to Class I, while 𝐵 (but not 𝐴) sends them

to occupations in Class III. Placing both 𝐴 and 𝐵 in the same class would violate the
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Figure 2: Hypothetical Examples of Stochastically Equivalent Classes
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(d) Cyclical / Generalized Exchange
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Note: The rows in each table represent the origin, and the columns the destination, of hypothetical mobility
flows. Dark cells represent origin-destination pairs of high mobility, while brighter cells represent those
with low mobility. Black thick lines show the boundaries of stochastically equivalent classes.

EC, since the destination of the flow—i.e., occupations in Class I or III—depends on its

origin—i.e., occupation 𝐴 or 𝐵. Borrowing the terminology from the literature on social

networks, we might say that the CC approach finds cohesive subgroups (Wasserman et al.

1994: Ch. 7) or community structures (Fortunato 2010), while the EC detects classes

that are structurally equivalent (Lorrain and White 1971) or stochastically equivalent

(Holland et al. 1983).

Although cohesive subgroups and structural equivalence have been, at times, pitted

against each other in the literature on networks (e.g., Burt 1987; Erickson 1988), it
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should be noted that equivalence is more general a criterion than cohesive subgroups in

that the former is able to express a wider array of structures and subsumes clustering

as a special case. To illustrate this point, Figure 2 shows four hypothetical mobility

tables where the rows of the table represent the origin and the columns the destination

of worker flows. Dark-colored cells represent pairs of occupations with high mobility,

the light-colored cells those with little or no mobility, and the thick black lines the class

boundaries. While all four examples in Figure 2 show meaningful mobility structures,

the only pattern captured by the CC is (a), in which the within-class mobility flow

exceeds that between classes. The EC approach, on the other hand, is able to capture

all four structures. For instance, the two classes in Figure 2 (b) represent positions of

approximately equivalent occupations, since all occupations in Class I tend to send and

receive workers from Class II, and vice versa. In Figure 2 (c), all occupations in Class

III send their workers to all other classes as well as their own; those in Class II send

them to Class I and II, while workers in Class I circulate within their own class. Since

all occupations belonging to the same class share the same mobility pattern, except for

some random deviations, the three classes represent stochastically equivalent groups.

Lastly, in Figure 2 (d), the worker flow between the three classes forms a cycle (I→ II,

II→ III, and III→ I), which is another case of stochastically equivalent classes which

cannot be expressed as a clustering structure.

Of course, most observed mobility tables will not be as cleanly structured as the

ideal-types presented here. Instead, these patterns should be regarded as examples of

“sub-tables” or “local structures” that a model optimizing the EC is able to detect. It

would not be surprising to find that some occupations occupy similar positions in the

occupational system due to their exchange relation to another set of occupation, as in

(b), while other groups of occupations are characterized by their dense within-class

worker flow, as in (a). The EC encompasses all of these local configurations (and more)

and, therefore, enables researchers to go beyond clustering in detecting structure from

mobility tables.
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Equivalence and Stochastic Blockmodels

In order to keep the presentation simple, three relations have been implicitly subsumed

under the umbrella term Equivalence Criterion: stochastic equivalence (Holland et al.

1983), homogeneity (Goodman 1981), and internal homogeneity (Breiger 1981). All

three relations share the intuition that similar or identical in- and out-flows should

be the criterion to aggregate occupations into classes. However, they differ in their

restrictiveness.

Stochastic equivalence requires that occupations belonging to the same class have the

same probability distribution of in- and out-flows to all other occupations (Holland et al.

1983). This implies that all occupations of the same class must have the same expected

in- and out-flow profile to all other occupations in the mobility table, irrespective

of their sizes. Goodman’s homogeneity criterion, on the other hand, treats a set 𝑋

of occupations as homogeneous or collapsible if a model of quasi-independence fits

the subtable created by considering only the rows and columns of the mobility table

pertaining to occupations in 𝑋 . For Poisson-distributed outcomes, this is equivalent

to saying that occupations belonging to the same class share the same expected rate

of in- and out-flows to all other occupations after adjustments for the marginals and

diagonal cells of the mobility table. Hence, homogeneity can be understood as a

conditional stochastic equivalence relation, where the mobility rates are conditioned on

the total in- and out-flow as well as the number of stayers of each occupation. Lastly,

Breiger’s internal homogeneity thesis relaxes Goodman’s homogeneity criterion further

by adjusting the in- and out-flow probabilities of each occupation based on the marginal

distribution of each subtable formed by crossing occupations belonging to one class

with those belonging to another.1 Hence, occupations that are stochastically equivalent
1 To be precise, let 𝑦𝑖 𝑗 be a discrete random variable that represents the count in the 𝑖th row and

𝑗 th column of an 𝑁 × 𝑁 mobility table 𝑦, and let ≃ denote the relation of stochastic equivalence. Two
occupations, 𝑖 and 𝑗 , are said to be stochastically equivalent if the probability of any event defined on 𝑦
remains unchanged when 𝑖 and 𝑗 are interchanged (Holland et al. 1983). So, 𝑖 ≃ 𝑗 only if 𝑝(𝑦𝑖ℎ) = 𝑝(𝑦 𝑗ℎ)
and 𝑝(𝑦ℎ𝑖) = 𝑝(𝑦ℎ 𝑗 ) for all ℎ ∈ 𝑂, where 𝑂 is the set of occupations. Notice that stochastic equivalence
is indeed an equivalence relation and, thus, partitions the set 𝑂 into 𝑀 classes. Now, maintaining the
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are homogeneous, and homogeneous occupations are internally homogeneous. Yet, the

reverse direction of both of these implications are not necessarily true, and we might

order the three relations as

Stochastic Equivalence ⊆ Homogeneity ⊆ Internal Homogeneity. (1)

While homogeneity and internal homogeneity were formulated by mobility scholars, the

notion of stochastic equivalence developed quite independently by networks scholars

working on stochastic blockmodels (SBMs) (Holland et al. 1983; Wang and Wong

1987; Wasserman and Anderson 1987; Anderson et al. 1992). This might not be a

coincidence: both of these developments can be understood as answering the call for a

principled way to aggregate social entities based on relational information (White et al.

1976; Breiger 1990). And aggregating entities into classes based on the EC appears to be

natural, since it minimizes the loss of relational information in the data (Marsden 1985).

Indeed, occupations that are stochastically equivalent are, by definition, statistically

indistinguishable/interchangeable with respect to their in- and out-flow probabilities.

Hence, the class-by-class table created by aggregating them would loose no information

regarding the relational signal contained in the original mobility table.

usual assumption of log-linear models that 𝑦𝑖 𝑗 follows a Poisson distribution with parameter 𝜆𝑖 𝑗 , we
note that 𝜆𝑖 𝑗 completely specifies the probability distribution in cell (𝑖, 𝑗) of the mobility table and
𝑖 ≃ 𝑗 only if 𝜆𝑖ℎ = 𝜆 𝑗ℎ and 𝜆ℎ𝑖 = 𝜆ℎ 𝑗 for all ℎ ∈ 𝑂. Hence, the hypothesis that the mobility table 𝑦
consists of 𝑀 stochastically equivalent classes can be represented by the specification 𝜆𝑖 𝑗 = 𝜓𝑘 [𝑖 ]𝑙 [ 𝑗 ] ,
where 𝜓𝑘𝑙 , 1 ≤ 𝑘, 𝑙 ≤ 𝑀 is the expected frequency at which occupations in class 𝑘 send workers to
occupations in class 𝑙, and 𝑘 [𝑖] and 𝑙 [ 𝑗] denote, respectively, the classes to which occupations 𝑖 and 𝑗

belong. Notice that this model assumes that all occupations belonging to class 𝑘 are expected to send
the same number of workers to all occupations belonging to class 𝑙 irrespective of their total in- and
out-flow. The homogeneity criterion, on the other hand, requires only that the origin and destination
are (quasi-)independent conditional on the class memberships, which is less restrictive. For a mobility
table consisting of 𝑀 homogeneous classes, 𝜆𝑖 𝑗 = 𝛼𝑖𝛽 𝑗𝛿

I(𝑖= 𝑗 )
𝑖 𝑗

𝜓𝑘 [𝑖 ]𝑙 [𝑖 ] , where 𝛼𝑖 , 𝛽 𝑗 , and 𝛿I(𝑖= 𝑗 )
𝑖 𝑗

are,
respectively, row-, column-, and diagonal-effects. Hence, stochastic equivalent classes are homogeneous,
but not vice versa, and the former can be understood as a stronger version of latter with the constraints
𝛼𝑖 = 𝛽 𝑗 = 𝛿𝑖 𝑗 = 1 for all 𝑖, 𝑗 ∈ 𝑂. Lastly, Breiger’s internal homogeneity thesis relaxes Goodman’s
requirement further by setting 𝜆𝑖 𝑗 = 𝛼 (𝑘,𝑙)𝑖

𝛽
(𝑘,𝑙)
𝑗

𝛿
I(𝑖= 𝑗 )
𝑖 𝑗

𝜓𝑘 [𝑖 ]𝑙 [𝑖 ] , where 𝛼 (𝑘,𝑙)
𝑖

and 𝛽 (𝑘,𝑙)
𝑗

are, respectively,
row- and column-effects specific to the subtable formed by considering those occupations with origin
in class 𝑘 and destination in 𝑙 (Breiger 1981: 589). Hence, Goodman’s model of homogeneity can be
understood as a model of internal homogeneity with the added constraints 𝛼 (𝑘,𝑙)

𝑖
= 𝛼𝑖 and 𝛽 (𝑘,𝑙)

𝑗
= 𝛽 𝑗 for

1 ≤ 𝑘, 𝑙 ≤ 𝑀 and 𝑖, 𝑗 ∈ 𝑂.
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As similar these approaches are, so did mobility and network scholars share the same

methodological difficulties. The most pressing challenge was the detection of class struc-

tures satisfying the EC from the observed data, instead of estimating parameters based

on an assumed structure. Indeed, the introduction of methods to inductively recover

stochastically equivalent classes from observed networks lead to a “rediscovery” of

stochastic blockmodels in the statistical literature starting in the late 1990s (Snijders and

Nowicki 1997; Nowicki and Snijders 2001; Daudin et al. 2008; Mariadassou et al. 2010;

Karrer and Newman 2011; Zhang et al. 2015). Building on these developments, the next

section formulates a degree-corrected SBM that is suitable for the analysis of mobility ta-

bles together with an estimation method—variational Expectation Maximization—that

can be used to estimate the model parameters.

Stochastic Blockmodels for the Analysis of Mobility

Tables

The degree-corrected stochastic blockmodel (DCSBM) used in this paper groups to-

gether occupations that are stochastically equivalent in their out- and in-flow pattern of

workers after adjustments for occupations’ total in- and out-flow as well as the number of

stayers. The model can be motivated as a log-linear model with latent discrete variables

that represent stochastically equivalent classes of occupations after these adjustments.

In this section, the model is formulated together with a high-level introduction to the

algorithm used to approximate the MLE of the model parameters. A more detailed

discussion of the algorithm is delegated to the appendix.

The Model

Consider an 𝑁 × 𝑁 mobility table 𝑦, where 𝑁 is the number of occupations, and where

the (𝑖, 𝑗)th cell of 𝑦 corresponds to a random variable 𝑦𝑖 𝑗 ∈ {0, 1, ...} representing the
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number of workers moving from origin occupation 𝑖 = 1, ..., 𝑁 to destination occupation

𝑗 = 1, ..., 𝑁 . Following the log-linear modeling tradition, we assume that 𝑦𝑖 𝑗 follows a

Poisson distribution with parameter 𝜆𝑖 𝑗 . A convenient starting point to model 𝜆𝑖 𝑗 is to

assume

𝜆𝑖 𝑗 ≡ 𝛼𝑖𝛽 𝑗𝛿I(𝑖= 𝑗)𝑖 𝑗
, (2)

where 𝛼𝑖 and 𝛽 𝑗 are, respectively, the row- and column-effects that capture the total out-

and in-flow of occupations, I(𝑥) is an indicator function that is equal to 1 if 𝑥 is true and

0 otherwise, and 𝛿I(𝑖= 𝑗)
𝑖 𝑗

are diagonal effects that capture the excess rate at which workers

stay in their occupations. This model of “quasi-independence” (Goodman 1968) fits

the diagonal cells of 𝑦 perfectly, while assuming independence between origin and

destination in the off-diagonal cells.

The DCSBM that is used throughout this paper assumes that any systematic devi-

ations from the model of quasi-independence is explained by the class membership of

the occupations. Assuming that there are 𝑀 such classes, we might write

𝜆𝑖 𝑗 ≡ 𝜇𝑖 𝑗Ψ𝑧𝑖𝑧 𝑗 , (3)

where 𝜇𝑖 𝑗 = 𝛼𝑖𝛽 𝑗𝛿I(𝑖= 𝑗)𝑖 𝑗
and 𝑧𝑖 ∈ {1, 2, ..., 𝑀} is a discrete latent variable that indicates

the class to which occupation 𝑖 belongs. Ψ𝑘𝑙 denotes the element in the 𝑘th row and

𝑙th column of an 𝑀 × 𝑀 image matrix, Ψ, that reflects the excess mobility rate from

occupations belonging to class 𝑘 = 1, ..., 𝑀 to those in class 𝑙 = 1, ..., 𝑀 relative to the

quasi-independence model.2 Lastly, we assume that 𝑧𝑖 is drawn independently from a

categorical distribution with parameter 𝜋, where 𝜋 = [𝜋1, ..., 𝜋𝑀]⊤ is a 𝑀-dimensional

probability vector that satisfies 𝜋𝑘 > 0 for all 1 ≤ 𝑘 ≤ 𝑀 and
∑𝑀
𝑘=1 𝜋𝑘 = 1, and where

𝑥⊤ denotes the transpose of 𝑥. This completes the model. The assumed data-generating

2All parameters are constrained to be positive. That is, 𝛼𝑖 > 0, 𝛽 𝑗 > 0, 𝛿I(𝑖= 𝑗 )
𝑖 𝑗

> 0, for all 𝑖, 𝑗 ;
and Ψ𝑘𝑙 > 0 for all 𝑘, 𝑙. Further, to identify the model, the usual constraints

∏𝑁
𝑖=1 𝛼𝑖 =

∏𝑁
𝑗=1 𝛽 𝑗 =∏𝑁

𝑖=1 𝛿
I(𝑖= 𝑗 )
𝑖 𝑗

= 1 are added. Notice that the elements of Ψ are allowed to vary freely because the model is
formulated without a grand mean parameter.
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Figure 3: Data-Generating Process of Stochastic Blockmodel With Poisson Distributed
Outcome and Adjustments for Row, Column, and Diagonal Effects

Degree-corrected Stochastic Blockmodel, DGP
Data: 𝑦
Parameters: 𝜃 = {𝛼, 𝛽, 𝛿, 𝜋,Ψ}

1: for 𝑖 = 1, ..., 𝑁 do
2: 𝑧𝑖 ∼ Categorical(𝜋)
3: end for
4:
5: for 𝑖 = 1, ..., 𝑁 do
6: for 𝑗 = 1, ..., 𝑁 do
7: 𝜆𝑖 𝑗 ← 𝛼𝑖𝛽 𝑗𝛿

I(𝑖= 𝑗)
𝑖 𝑗

Ψ𝑧𝑖𝑧 𝑗
8: 𝑦𝑖 𝑗 ∼ Poisson(𝜆𝑖 𝑗 )
9: end for

10: end for

𝜋

𝛼, 𝛽, 𝛿,Ψ

𝑧𝑖

𝑧 𝑗 𝑦𝑖 𝑗

𝑁

𝑁

process (DGP) of the model is depicted in Figure 3 both as an algorithm and a directed

acyclic graph.

Notice what the model postulates: after adjusting for the marginal in- and out-flow

as well as the number of stayers of each occupation, the rest of the mobility table is

completely characterized by the class membership of the occupations. In other words, it

is assumed that the class structure “explains” the associations in the mobility table beyond

quasi-independence, which is a strong version of the criterion proposed by Breiger

(1981) to aggregate occupations into social classes. Reversely, once adjusted for the

class memberships of occupations, the mobility pattern in 𝑦 is quasi-independent, which

is the homogeneity criterion of Goodman (1981). Hence, finding classes of occupations

that are stochastically equivalent conditional on the marginal and diagonal effects is

equivalent to finding sets of occupations that are homogeneous/collapsible according

to Goodman’s criterion. As homogeneity is a special case of internal homogeneity, it

follows that these classes will be internally homogeneous as well.

The main difference between the current model and the approach adopted by Breiger

and Goodman is how the class membership of the occupations, 𝑧, is treated. In the
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approach of Breiger and Goodman, the class assignment is treated as a fixed and known

feature of the model under the tested null hypothesis. Model parameters are estimated

conditional on the assumed class partition, after which a goodness-of-fit test is performed

to assess whether the assumed partition constitutes a good model of the data. Hence,

inference regarding 𝑧 is performed indirectly, following the logic of hypothesis testing.

In the DCSBM, on the other hand, 𝑧 is treated as a latent random variable. Model

parameters are estimated by averaging over the uncertainty in 𝑧—i.e., by maximizing

the marginal likelihood—after which the class assignment is directly predicted based on

its posterior distribution. Hence, while the goal of both approaches is to find a partition

of the occupations according to the EC, differences in the assumed nature of 𝑧 lead to

different inference procedures.

The DCSBM in (3) is also similar to the model used by Karrer and Newman (2011)

with two differences: first, while Karrer and Newman (2011) developed their model for

symmetric networks, the model in (3) differentiates between the origin and destination of

worker flows. Second, Karrer and Newman did not “block out” the diagonal cells of the

weighted adjacency matrix. This is equivalent to assuming that the mobility table can

be described by a model of independence conditional of the block structure—i.e., that

not only the between-occupation mobility rates but also the rate of staying in the same

occupation is the same for occupations belonging to the same class after adjustments

for the total in- and out-flow of occupations. Karrer and Newman (2011) justify this

modeling choice by assuming that the network is sparse—i.e., that the probability of

self-loops becomes negligible as the number of nodes in the network grows. Although a

reasonable assumption for many networks, it is doubtful whether it will apply to mobility

tables where stayers tend to occupy a large share of the total mobility flow regardless

of the size of the table. By adding a separate set of parameters for the diagonal cells,

the current model allows for within-class heterogeneity in the rate of stayers and aligns

model closer with how mobility tables have been analyzed in the sociological literature

on occupational mobility.
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Estimation

Although the formulation of the DCSBM is relatively simple, estimating its parame-

ters from observed data is challenging. Maximum likelihood estimation requires the

maximization of the marginal likelihood:

𝑝𝜃 (𝑦) =
∑︁
𝑧∈Z

𝑝𝜃 (𝑦, 𝑧) (4)

with respect to the parameter vector 𝜃 = {𝛼, 𝛽, 𝛿,Ψ, 𝜋}, where 𝑝𝜃 (𝑦, 𝑧) is the complete-

data likelihood andZ is the set of values that 𝑧 can assume with positive probability. The

main challenge is that the right-hand side of equation (4) is a sum of 𝑀𝑁 terms, which

becomes quickly intractable. While Markov Chain Monte Carlo (MCMC) methods

have been proposed to estimate 𝑧, sampling approaches suffer from the notorious label

switching problem (Stephens 2000; Jasra et al. 2005), which limits the interpretability of

the results when the number of estimated classes become large and relabeling algorithms

are less likely to be successful (Nowicki and Snijders 2001). In this paper, I instead use

a variational expectation-maximization (VEM) algorithm to approximate the MLE of

the parameters of the model (Daudin et al. 2008; Mariadassou et al. 2010).

The VEM algorithm proceeds by the same steps as the original EM algorithm

(Dempster et al. 1977) with one major difference. In the usual EM algorithm, the E-step

consists of calculating the posterior distribution of the unobserved variables, 𝑝𝜃 (𝑧 | 𝑦).

Unfortunately, for DCSBMs, this distribution cannot be calculated in reasonable time for

all but the smallest mobility tables (Snijders and Nowicki 1997). The VEM algorithm

tries to overcome this problem by substituting the usual E-step with a variational E-step,

where the intractable distribution 𝑝𝜃 (𝑧 | 𝑦) is approximated via a tractable variational

distribution. The quality of the approximation depends on how close the variational

distribution is to the target distribution, and finding a good candidate distribution is the

art of this approach. In this paper, I follow Daudin et al. (2008) and Mariadassou et al.

14



(2010) and use a mean-field approach, which approximates the posterior 𝑝𝜃 (𝑧 | 𝑦) by a

distribution that assumes independence between the class labels of occupations. Despite

its simplicity, the mean-field approach has found many successful applications in the

finite mixture modeling of network, text, and other types of data (Blei et al. 2017; Lee

and Wilkinson 2019). For computational efficiency, the VEM algorithm is coded in C++

using the Eigen library (Guennebaud et al. 2010). More details regarding the VEM

algorithm and steps to choose initial values can be found in the appendix.

Simulation Study

A series of simulations were conducted to examine how the model behaves under

different conditions. The model was tested for recovery of the class membership vector,

𝑧, as well as computation time.

Design

The parameters of the simulations were set as follows: the number of occupations were

set to 𝑁 ∈ {50, 100, 500} and, for each value of 𝑁 , the number of classes was varied

between 𝑀 ∈ {2, 3, 5}, except that for 𝑁 = 500 a scenario with 𝑀 = 10 classes was

added as well.3 For each value of 𝑁 , the logged row- and column-effects were simulated

independently from a standard Normal distribution and remained fixed throughout all

simulation runs. Three types of image matrices were specified corresponding to the three

ideal types in Figure 2 noting that the “Exchange” structure corresponds to the “Cyclical”

structure for a network with two classes. The parameter 𝛾 ∈ {1, 2, 3} was added to vary

the strength of the block structure by setting the “dense” blocks in Φ = log(Ψ) to 𝛾 and

the “sparse” blocks to −𝛾, where log(Ψ) is the element-wise log-transform of Ψ. For

example, for 𝑀 = 3 classes, the three image matrices on which the model is tested are:
3For smaller values of 𝑁 , it was difficult to generate data with the specified number of classes when

the class proportions were skewed—i.e. when 𝑁 was small and the 𝜈 = .5.
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Φsym(𝛾) =


𝛾 −𝛾 −𝛾

−𝛾 𝛾 −𝛾

−𝛾 −𝛾 𝛾


,Φcycl(𝛾) =


−𝛾 𝛾 −𝛾

−𝛾 −𝛾 𝛾

𝛾 −𝛾 −𝛾


,Φhier(𝛾) =


𝛾 −𝛾 −𝛾

𝛾 𝛾 −𝛾

𝛾 𝛾 𝛾


The number of occupations in each class was varied across simulation runs by setting

𝜋𝑘 ∝ 𝜈𝑘 for 𝑘 = 1, ..., 𝑀 , where 𝜈 = {0.5, 0.75, 1}. When 𝜈 = 1, the elements of 𝜋 will

be all equal to 1/𝑀 leading to approximately equally sized classes; for smaller values

of 𝜈, the distribution 𝜋 becomes more skewed. For each combination of the parameters,

25 datasets were simulated according to the algorithm in Figure 3 to which the model

is fitted with 20 different initial values.4 In total, this leads to 35 + 33 = 270 different

combinations of the parameters {𝑁, 𝑀,Ψ, 𝛾, 𝜈} and 270×25 = 6,750 simulated datasets

on which the model is tested. A summary of the full simulation design is shown in Figure

A1 of the online supplement.5

Simulation Results

All models were run on the same machine equipped with an AMD EPYC 2.0GHz CPU

using a single thread. For mobility tables with up to 100 occupations and 5 classes,

fitting the model takes about a second or less. While the runtime increases slightly with

the number of fitted classes when the number of occupations is relatively small, these

differences are far less than those between mobility tables of small and larger sizes. Still,

even with 500 occupations and 10 classes, the median run time was 20.8 seconds on a

single thread, which shows that the model could be used for analyzing mobility tables

of highly disaggregated occupational groups.6 The full distribution of runtimes across
4The first six initial values are created by the spectral clustering algorithm described in the appendix

on six different symmetrized mobility matrices: the simple symmetrization 𝑦 + 𝑦⊤, bibliometric sym-
metrization, degree-discounted bibliometric symmetrization, and, for each variant, once using the graph
Laplacian and once the symmetrically normalized graph Laplacian. If 𝐿 is the graph Laplacian and 𝐷
a diagonal matrix containing the degrees of the nodes, the symmetrically normalized graph Laplacian is
defined as 𝐿sym = 𝐷−1/2𝐿−1/2𝐷−1/2. The rest of the initial values are created randomly.

5Notice that the diagonal parameters, 𝛿I(𝑖= 𝑗 )
𝑖 𝑗

are not generated in the simulation because the diagonals
are “blocked out” in the estimation process. The concrete parameters can be recovered noting that the
diagonals of the mobility table are fitted perfectly.

6The 10th and 90th percentile of the runtime distribution for a model with 500 occupations and
10 classes were, respectively, 6.5 and 34.8 seconds. Leger (2016) reports that using the R package
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Figure 4: Rand Index Between the “True” and Predicted Class Membership
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Notes: Points are jittered vertically to show the distribution of the Rand index. Thick black dots represent
the median of the distributions. Simulation runs that resulted in no variation in the class memberships
are excluded from the figure. A corresponding plot of the normalized mutual information (see endnote 9
for the definition) can be found in Figure A3 of the online supplement.

different simulated scenarios are graphically represented in Figure A2 of the online

supplement.

Figure 4 shows the distribution of the Rand index (Rand 1971) calculated between

the “true” class membership vector, 𝑧, from which the data were simulated and the

maximum a posteriori (MAP) prediction, 𝑧MAP, obtained after fitting the model. The

thick black dot represents the median of the distribution, while the smaller dots represent

the Rand Index for each individual run. The figure shows that the model is, in general,

blockmodels requires 85 seconds to fit a model without covariates to a graph with only 100 nodes and
10 classes; for a model that includes covariates, the reported runtime for a graph with 100 nodes and 10
classes is 2 hours 41 minutes and 16 seconds. These numbers are not directly comparable with those
presented here, since the models are tested on different data, and all covariates in the model tested here
are dummy variables. However, it is noticeable that the DCSBM could be fitted in less time than what the
blockmodels package requires for a model without covariates on a smaller graph, since a closed-form
solution exists for the M-step in the latter case while numerical methods have to be used for the DCSBM.

17



successful in recovering the “true” block structure. For almost all scenarios, the median

Rand index is 1.00, indicating a perfect recovery of the class membership vector. Yet,

the model performs better when the signal of the block structure is strong and when

ratio of the number of occupations to that of classes is large. For example, the smallest

median Rand Index across all simulation scenarios is found in the {𝑁 = 500, 𝑀 =

10, 𝜈 = 1.00, 𝛾 = 1.00} and {𝑁 = 50, 𝑀 = 5, 𝜈 = 1.00, 𝛾 = 1.00} scenario, both of

which have low occupation-to-class ratios and the weakest block-signal (𝛾 = 1). Still,

even here, the median Rand Indices were both .915, showing a good match between

the “true” and recovered class membership vector. Lastly, it should be noted that even

in successful scenarios, we find that the algorithm sometimes stops at local maxima

or degenerate solutions. This highlights the importance of starting the algorithm from

multiple different initial values.7

Empirical Examples

To examine how the model performs on real data, two well-studied mobility tables were

analyzed. The first example is the mobility table studied by Breiger (1981), which

consists of intergenerational mobility patterns from father’s occupation to son’s first

occupation collected in the Occupational Changes in a Generation (OCG-II) supplement

to the March 1973 Current Population Survey. The dataset was originally analyzed

by Featherman and Hauser (1978) and the occupations were pre-aggregated into 17

occupational groups by Breiger (1981) using the same categories as Blau and Duncan

(1967). This example will be of importance, as it comes with a benchmark against

which the partition recovered by the DCSBM can be compared to—namely Breiger’s

own partition. It is worth reiterating that the final model used by Breiger (1981) is not
7Out of the 6,750 runs, 188 resulted in a degenerate predictions of the class membership vector, where

all occupations are allocated to the same class. Unsurprisingly, the degenerate results occurred when
the table was small (93.1% of cases were found for the 𝑁 = 50 scenario) and the “signal” of the block
structure was weak (94.7% of the cases occurred when 𝛾 = 1, 5.3% occurred when 𝛾 = 2, and none when
𝛾 = 3). In Figure 4, these results are excluded.
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exactly the same model as the DCSBM in equation (3) despite many similarities. Not

only is the class membership vector, 𝑧, treated as known under the tested null hypothesis

by Breiger but his final model (Hypothesis 7) fits separate row- and column-effects for

each sub-table created by crossing one class with another, while the model in (3) fits only

one set of row- and column-effects for each occupation.8 Hence, the benchmark is not

perfect. The second example analyzes the mobility data collected by Glass (2013[1954]),

which was aggregated into an 8 × 8 mobility table by Miller (1960: 71), and analyzed

by multiple mobility scholars including Duncan (1979) and Clogg (1981). This dataset

was used by Goodman (1981) to demonstrate his approach to aggregating homogeneous

occupations into classes. Hence, we might compare the partition inductively recovered

by the DCSBM with that found by Goodman.

Comparison with Breiger (1981)

Models with 2 to 8 classes were fitted to the 17 × 17 mobility table analyzed by

Breiger (1981). To select a final partition, the integrated classification likelihood (ICL)

(Biernacki et al. 2000) was used, which is defined as

ICL(𝑀, 𝜃) = max
𝜃

log 𝑝𝜃
(
𝑦, 𝑧MAP

)
− 1

2

[
log(𝑁2)𝑃1 + log(𝑁)𝑃2

]
(5)

where log 𝑝𝜃
(
𝑦, 𝑧MAP

)
is complete-data log-likelihood evaluated at the MAP of 𝑧,

𝑃1 = 3(𝑁 − 1) + 𝑀2, and 𝑃2 = 𝑀 − 1. The ICL criterion approximates the integrated

complete-data log-likelihood via a Laplace approximation, similarly to how the Bayesian

Information Criterion approximates the marginal log-likelihood (Raftery 1995). Dif-

ferently to the BIC, however, the ICL lacks the “−2 multiplier” (which is added for

historical reasons to put the statistic on the deviance scale) and, hence, models with
8In short, the DCSBM finds classes that are homogeneous (Goodman 1981), which is a stronger

criterion than the internal homogeneity thesis (Breiger 1981) as discussed above. See footnote 1 for a
formal comparison between these models. The implications of the differences have been discussed by
Goodman (1981), Marsden (1985), and Hout (1983).

19



Figure 5: Integrated Classification Likelihood of DCSBMs fitted to the 17×17 Mobility
Table in Breiger (1981)
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Notes: Models with higher ICL values are preferred. The ELBO is the lower bound of the marginal
log-likelihood based on the variational distribution. The formal definition of the ELBO can be found in
the appendix.

larger ICL values are preferred. Figure 5 shows the ICL values for models with two to

eight classes with values from 𝑀 = 4 to 𝑀 = 8 magnified in the bottom-right of the

plot. For each model, the VEM algorithm was started from 30 different initial values.

According to the ICL criterion, the model with 6 classes fits the data best. Hence, in

what follows, the 6-class model will be interpreted.

A comparison between the partition obtained by Breiger (1981) and the DCSBM

is presented in Figure 6 and Table 1. Instead of showing the frequencies, the mobility

table is represented as a heatmap in Figure 6. The colors represent the log-ratio 𝑓 ∗
𝑖 𝑗
=

log(𝑜𝑖 𝑗/𝑒𝑖 𝑗 ), where 𝑜𝑖 𝑗 is the observed frequency in cell (𝑖, 𝑗) of the table and 𝑒𝑖 𝑗 is the

expected frequency under a quasi-independence model with the diagonal entries of the

cells blocked out.

Figure 6 shows that Breiger’s partition and the DCSBM partition resemble each
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Figure 6: Comparison of Block Structure Between DCSBM and Breiger (1981)
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𝑒𝑖 𝑗 are the expected counts of a quasi-independence model with the diagonal entries of the table blocked
out. Darker colors indicate higher values of 𝑓 ∗

𝑖 𝑗
. The thick white lines show the block structure of the

models, where the maximum a posteriori (MAP) estimate is used to allocated occupations into classes in
the case of the DCSBM. The ordering of the occupations is the same in both plots. The Rand index and
normalized mutual information between the partitions are, respectively, 0.93 and 0.87.

other quite closely. The Rand Index between the two partitions is 0.93, showing that

over 90% of occupation-pairs are in agreement across the partitions in the sense that if

two occupations are allocated in the same class in Breiger’s partition, they are also in

the same class of the DCSBM partition (and if they are in different classes in the former,

they are also in different ones in the latter). While the Rand Index is easy to interpret,

it doesn’t take into account the marginal distribution of the two partitions. For this

reason, the normalized mutual information (NMI) has been traditionally used to compare

community structures in the network literature (e.g., Danon et al. 2005; Lancichinetti

and Fortunato 2009; Yang et al. 2016). Calculated between the DCSBM and Breiger’s

partition, the NMI is 0.87 suggesting, again, a quite tight correspondence.9 The only
9There are multiple ways in which the mutual information between two classification schemes can

be normalized. Here, the arithmetic mean of the entropies is used for ease of comparison with earlier
studies, i.e., NMI(𝑋,𝑌 ) = 2MI(𝑋,𝑌 )/[𝐻 (𝑋) + 𝐻 (𝑌 )], where 𝑋 and 𝑌 are (the probability distributions
induced by) two classification schemes, 𝐻 (𝑋) is the entropy of 𝑋 , and MI(𝑋,𝑌 ) the mutual information
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differences between the partitions are that “1. Professionals, self-employed” and “5.

Proprietors” form their own class in Breiger’s partition, while they are merged with

adjacent occupations in the DCSBM-partition, and that “13. Operatives, manufacturing”

are grouped together with the two laborer groups in Breiger’s partition, while they are

grouped with “12. Operatives, other,” “11. Service,” and “10. Crafts, construction” by

the DCSBM. In short, it might be said that Breiger’s partition is “almost” a refinement

of the partition uncovered by the DCSBM.10

Perhaps most importantly, the results in Figure 6 show that the DCSBM detects

partitions that make theoretical sense. Not only is the DCSBM partition similar to that

of Breiger (1981), who had substantive knowledge of the mobility table and tried to

find a partition satisfying a similar criterion as that optimized by the DCSBM, but the

boundaries of the partition align with the order in which Blau and Duncan (1967) laid

out the occupations, which, arguably, reflects their understanding of social distances

between them. In short, the analysis shows that the DCSBM is able to detect meaningful

patterns in mobility tables based on the flow of workers without supervision on part of

the researcher.

Collapsibility

As the next step, the DCSBM partition is compared to the findings in Goodman (1981).

The leading example in Goodman (1981) was the 8×8 mobility table shown in the right

between 𝑋 and 𝑌 . NMI(𝑋,𝑌 ) ranges from zero—when 𝑋 and 𝑌 are independent or if 𝐻 (𝑋) or 𝐻 (𝑌 ) is
equal to zero—to one—which occurs when the classification schemes agree perfectly.

10It might be worth noting that Breiger’s model provides a closer fit to the data than a log-linear
model using the DCSBM partition. Breiger (1981) reports a 𝐺2 statistic of 76.9 with residual degrees of
freedom of 69 for his model (p. 596). As the log-likelihood of the saturated model, summing over the
off-diagonals of the table, is ℓfull = −714.205, the log-likelihood of Breiger’s model can be calculated as
− 1

2 × 𝐺
2 + ℓfull = −752.655 with 𝑛(𝑛 − 1) − 𝑑𝑓resid = 272 − 69 = 203 fitted parameters (see footnote 1

for an explicit formulation of Breiger’s model). This is a higher log-likelihood than that resulting from
a log-linear model based on the DCSBM-partition—i.e., when we use the specification in equation (3)
with 𝑧 substituted with 𝑧MAP—which is equal to −969.327 with 58 fitted parameters. Thus, based on the
log-likelihood, Breiger’s model offers a better fit to the data. This is not surprising, since Breiger’s model
fits more parameters to the table, and the log-likelihood is a nondecreasing function of model complexity.
On the other hand, when the two models are compared using the BIC statistic, we obtain 2643.288 and
2263.791, respectively for Breiger’s partition and the DCSBM-based partition. This might indicate that
Breiger’s model tends to overfit the data.
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Table 1: Cross-tabulation of Partition Recovered from DCSBM and Partition Proposed
by Breiger (1981)

DCSBM Partition
Breiger (H7) Class I Class II Class III Class IV Class V Class VI
Class I 1
Class II 3
Class III 1
Class IV 2
Class V 2
Class VI 3
Class VII 1 2
Class VIII 2

Note: Rows of the tables correspond to the eight classes of Breiger’s (1981) final model and consist of
Class I (1), Class II (2, 3, 4), Class III (5), Class IV (6, 7), Class V (8, 9), Class VI (10, 11, 12), Class
VII (13, 14, 15), and Class VIII (16, 17), where the numbers in parentheses indicates the numbering of
occupations as they appear in Figure 6. The columns of the table the classes recovered from the DCSBM,
where the maximum a posteriori (MAP) estimates are used to allocated occupations into classes. The
occupations belonging to each class are Class I (1,2,3,4), Class II (5, 6, 7), Class III (8, 9), Class IV (10,
11, 12, 13), Class V (14, 15), and Class VI (16, 17). Empty entries of the table are cells with zero counts.
The Rand index and normalized mutual information between the partitions are, respectively, 0.93 and
0.87.

panel of Figure 7, where he found that occupations 4 and 5𝑎 should be collapsed, while

5𝑎 and 5𝑏 should belong into separate classes. As shown in the right panel of 7, the

partition recovered by the DCSBM, where the number of classes are selected via the

ICL, indeed groups occupations 4 and 5𝑎 together, while allocating 5𝑏 into different

classes.

Yet, further analyses reveals that the classes recovered from the DCSBM might

disagree with those based on Goodman’s homogeneity test. In addition to {4, 5𝑎},

the DCSBM partition collapses {1, 2, 3} and {6, 7} into classes as well, while only

{6, 7} passes Goodman’s test as shown in Table 2. Interestingly, when Goodman’s

tests is applied to all possible pairs of occupations in the table, the results suggests that

only {1, 2} should be combined (𝐺2 = 9.49, 𝑑𝑓 = 11, 𝑝 = .57) instead of collapsing

them together with {3}. The same tendency of collapsing more occupations than

what Goodman’s test would recommend is found when Breiger’s table in Figure 6 is
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Figure 7: Integrated Classification Likelihood and Recovered Partition from the DCSBM
fitted to the 8 × 8 Mobility table in Goodman (1981)
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Note: Plot (a) shows the ICL statistic and the maximized ELBO for different number of fitted classes.
The ELBO is the lower bound of the marginal log-likelihood based on the variational distribution. The
formal definition of the ELBO can be found in the appendix. Plot (b) shows the mobility table analyzed
by Goodman (1981) as a heatmap. Colors of the heatmap reflect values of 𝑓 ∗

𝑖 𝑗
= log(𝑜𝑖 𝑗/𝑒𝑖 𝑗 ), where

𝑜𝑖 𝑗 are the observed counts and 𝑒𝑖 𝑗 are the expected counts based on a quasi-independence model with
the diagonal entries of the table blocked out. Darker colors indicate higher values of 𝑓 ∗
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value. The thick white lines show the block
structure recovered from an DCSBM with 4 fitted classes.

analyzed. Indeed, it turns out that none of the classes detected by the DCSBM pass

Goodman’s test, and only a single pair of occupations is found to be homogeneous—

namely, “3. Managers” and “4. Sales, other.” Hence, according to Goodman’s criterion,

the remaining occupations would be left as their own class. Notice that the DCSBM

indeed collapsed the occupations that pass Goodman’s test into the same class; however,

instead of combining only {3, 4}, the DCSBM bundles {1, 2, 3, 4} together.11

While it is difficult to reach general conclusions from two examples, these results

suggests that the DCSBM detects partitions that are cruder than those resulting from

the procedure recommended by Goodman (1981). Whether this behavior is desirable
11Full results of testing the collapsibility of all pairs of occupations in the mobility table presented in

Figure 7b and Figure 6, respectively, can be found in Table A2 and Table A3 of the online supplement.
Results of applying the homogeneity test to the classes detected by the DCSBM on Breiger’s table are
shown in Table A1.
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Table 2: Goodness-of-fit Statistics of Quasi-independence Model Fitted to Classes
Identified by the DCSBM Applied to the Mobility Table in Figure 7b

𝐺2 df p Collapsed Rows/Cols
48.41 21 0.00 1, 2, 3
7.87 11 0.73 4, 5
— — — 6
9.03 11 0.62 7, 8

Notes: 𝐺2, 𝑑𝑓 , and 𝑝 are, respectively, the likelihood ratio chi-squared statistic, the residual degrees of
freedom, and the associated 𝑝-value of the goodness-of-fit test when a quasi-independence model is fitted
to only those rows and columns indicated in the fourth column of the table. Test results for the DCSBM
partition of Breiger’s(1981) table are shown in Table A1 of the online supplement.

will depend on the application. For example, a criterion that collapses only occupations

3 and 4 in Breiger’s 17 × 17 mobility table might be considered too restrictive to be

practically useful. Indeed, a log-linear model fitted to Breiger’s table collapsing only

those occupations that pass Goodman’s test results in a higher BIC value than a model that

collapses occupations according to the recovered DCSBM partition (see Table A4 of the

online supplement). Perhaps practically more important, finding a well-fitting partition

by testing the collapsibility of all possible subsets of occupations is computationally

intractable except for very small mobility tables, since the number of models that need

to be fitted increases exponentially in the number of occupations. Even for tables of

dimension 17 × 17, such a procedure would require fitting 217 − 1 = 131,071 Poisson

GLMs in the worst-case; for a 30 × 30 table, the number would jump to 1,073,741,823.

Hence, similar to Hauser’s topological model (Hauser 1978), Goodman’s procedure

is practically infeasible when searching inductively for a partition that summarizes

mobility patterns in moderate to large tables. On the other hand, it is exactly for these

tasks that recent computational methods, particularly community detection algorithms,

have shown the most promise. Hence, in the next section, I compare the partitions

recovered from these algorithms to the DCSBM partition.
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Comparison with Community Detection Algorithms

Community detection algorithms and the DCSBM offer different approaches to finding

structure in relational data. While a thorough comparison would go beyond the scope

of this paper, a couple of major differences might be noted. First, community detection

algorithms are computational algorithms that optimize a criterion function without

specifying a data-generating process (DGP). As these approaches are not model-based,

the criterion functions tend to be chosen by heuristics instead of being derived from first

principles (but see, Rosvall and Bergstrom 2008; Rosvall et al. 2009). The DCSBM,

on the other hand, is a fully probabilistic model based on distributions belonging to the

exponential family. This leads to estimation procedures grounded in statistical theory—

such as maximum likelihood or Bayesian approaches—with optimal properties (Bickel

and Chen 2009; Celisse et al. 2012; Bickel et al. 2013).12 Second, community detection

algorithms are designed exclusively for the detection of partitions based on the clustering

criterion. Hence, even in mobility tables that contain strongly structured worker flows,

community detection algorithms will fail to find meaningful patterns unless these flows

are confined within clusters. The DCSBM, on the other hand, groups occupations based

on the equivalence criterion and, thus, is able to detect both clustering as well as more

general structures. The generality of the DCSBM comes, however, at the cost of higher

computational complexity. Indeed, most community detection algorithms are orders

of magnitude faster than the algorithms used to fit DCSBMs. Hence, if the primary

goal is to detect clusters in large datasets, community detection methods offer greater

efficiency.

To compare community detection algorithms and the DCSBM on mobility data,

I fit five widely used community detection algorithms to the two tables presented in
12It should be noted that the properties of the variational EM algorithm remain an active area of research.

Bickel et al. (2013) provides conditions under which the VEM estimator for stochastic blockmodels as
well as their degree-corrected variants using a fully factorized variational distribution is asymptotically
equivalent to the maximum likelihood estimator. Yet, their results were limited for binary, symmetric,
and sparse networks.
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Table 3: Community Detection Algorithms Applied to the 17 × 17 Mobility Table
Analyzed in Breiger (1981)

Occupation Infomap Walktrap Edge Betweenness Louvain Leiden
1. Professionals, self-employed 1 1 1 1 1
2. Professionals, salaried 1 1 2 1 1
3. Managers 1 1 3 1 1
4. Sales, other 1 1 4 1 1
5. Proprietors 1 1 2 1 1
6. Clerks 1 1 5 1 1
7. Sales, retail 1 1 2 1 1
8. Crafts, manufacturing 1 1 5 2 1
9. Crafts, other 1 1 5 2 1
10. Crafts, construction 1 1 5 2 1
11. Service 1 1 5 2 1
12. Operatives, other 1 1 5 2 1
13. Operatives, manufacturing 1 1 5 2 1
14. Laborers, manufacturing 1 1 5 2 1
15. Laborers, other 1 1 5 2 1
16. Farmers 1 2 5 3 1
17. Farm laborers 1 3 5 3 1

Notes: Numbers are used to indicate clusters but have no substantive meaning. For the Edge Betweenness,
Louvain, and Leiden algorithm, which maximize modularity, a symmetrized version of the mobility table
was used in the analysis (see endnote 13 for details).

the previous section, where the tables are treated as weighted adjacency matrices:

the Infomap (Rosvall and Bergstrom 2008), the Walktrap (Pons and Latapy 2006),

the modularity maximization algorithm using edge-betweenness (Newman and Girvan

2004), the Louvain algorithm (Blondel et al. 2008), and the Leiden algorithm (Traag et al.

2019).13 Results in Table 3 show that almost all tested community detection methods

fail to find meaningful structures in the 17×17 table analyzed by Breiger. The Walktrap

and Edge Betweenness algorithm create multiple single-occupation communities while

lumping more than half of the occupations into one big cluster. Further, the Infomap

and Leiden algorithm fail to find any communities at all. Only the Louvain algorithm

finds an interpretable three-community solution: one cluster containing occupations 1
13It should be noted that the modularity criterion was designed for undirected graphs and has limitations

when applied to directed (or directed and weighted) graphs (Kim et al. 2010; Fortunato 2010). For this
reason, the mobility table was first symmetrized as 𝑦sym = (𝑦 + 𝑦⊤)/2 and then treated as the adjacency
matrix of an undirected weighted graph when applying the three algorithms that optimize modularity:
namely, edge betweenness, Louvain, and Leiden. For the Infomap and Walktrap algorithms, the original
mobility table was analyzed directly. For all algorithms, the default parameters in the R package igraph
(version 2.0.3) were used.
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to 7, another cluster of 8 to 15, and the last cluster of “16. Farmers” and “17. Farm

laborers”. Although not necessarily designed for small networks, all of these algorithms

have been successfully applied to graphs of comparable sizes. Given that the Louvain

algorithm successfully finds three clusters, it might be speculated that the denseness of

the table, instead of its small size, creates difficulties for other algorithms.

It is interesting to note that both Breiger’s and the DCSBM partition are nested within

the Louvain partition. Indeed, it appears that optimizing the EC “breaks up” clusters into

more fine-grained classes based on their between-cluster connection patterns. For exam-

ple, the first community detected by the Louvain algorithm—consisting of occupations 1

to 7—is broken into two classes by the DCSBM—occupations 1 to 4 and occupations 5

to 7. While the first of these classes has a high within-class density, the internal-density

of the second class is close to what is expected under quasi-independence. Indeed, what

distinguishes Class 2 is not its within-cluster density, but rather its higher-than-expected

in- and out-flow from and to occupations in Class 1. Thus, while community detection

lumps the two classes into one cluster based on their strong connections, the DCSBM

differentiates between occupations within the same cluster that have high internal den-

sity and those that have similar external connections.14 Similar conclusions are reached

when the algorithms are applied to the mobility table analyzed by Goodman (1981)

(results can be found in Table A5 of the online supplement).

Summary and Discussion

Recently introduced computational approaches to the analysis of mobility tables have

mainly focused on detecting clusters of occupations with dense internal mobility flows.

Yet, clustering is not the only way in which occupational mobility might be structured.
14The average of the logged mobility ratios within Class 1 of the DCSBM, not including the diagonal

cells—i.e., 1
𝑁𝐵1 (𝑁𝐵1−1)

∑
𝑖, 𝑗∈𝐵1
𝑖≠ 𝑗

log 𝑓 ∗
𝑖 𝑗
, where 𝐵1 is the set of occupations belonging to class 1 and

𝑁𝐵1 = |𝐵1 |—is 0.788. The corresponding number for Class 2 is 0.252, and the average logged mobility
ratios between Class 1 and 2—i.e., 1

𝑁𝐵1 𝑁𝐵2

∑
𝑖∈𝐵1∧ 𝑗∈𝐵2 log 𝑓 ∗

𝑖 𝑗
—is 0.403.
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As an alternative way to aggregate occupations, this paper focused on the equivalence

criterion—i.e., grouping occupations with the same or similar in- and out-flows to all

other occupations. It was discussed how “stochastic equivalence” (Holland et al. 1983),

the “homogeneity” criterion (Goodman 1981), and the thesis of “internal homogene-

ity” (Breiger 1981) can be understood as special cases fo this criterion. Further, the

paper shows how a degree-corrected stochastic blockmodel (DCSBM) with Poisson-

distributed outcomes enables the inductive detection of classes that are stochastically

equivalent conditional on the total in- and out-flow as well as the number of stayers of

each occupation, thereby allowing researchers to identify patterns of mobility that go

beyond clustering. Simulation results showed that the DCSBM fitted via a variational

EM algorithm is able to successfully recover classes that are connected by patterns

of clustering, cycles, and unidirectional flows. While the VEM algorithm performed

generally well, the recovery of the “true” class memberships appears to depend on the

(1) strength of the signal of the block structure vis-à-vis that of the row- and column-

effects and (2) ratio of the number of occupations to the number of classes, where both

a stronger signal and a higher ratio leads to a better recovery. The estimation algorithm

is quite efficient: the model can be fitted to mobility tables with 500 occupations and

10 classes in less than 30 seconds, on average. Perhaps more importantly, the empirical

examples showed that the DCSBM is able to identify meaningful structures in mobility

tables in situations where most tested community detection algorithms failed.

While sociologists pioneered the idea of structural equivalence and blockmodels

(Lorrain and White 1971; White et al. 1976), recent developments of their stochastic

counterparts have yet to find applications in mobility research despite a surge in compu-

tational approaches. In hindsight this is surprising as well as unfortunate. It is surprising,

because the idea of applying blockmodels to mobility patterns is quite old (e.g., Breiger

1981; Goodman 1981; Padgett 1990) and the DCSBM appears to be a natural extension

of the traditional log-linear model, the main workhorse of mobility scholars. Yet, while

other social scientists utilized various forms of stochastic blockmodels to find latent
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structures in the labor markets (e.g., Nimczik 2017; Norris Keiller 2020; Fogel and

Modenesi 2023), geographic mobility patterns (e.g., Carlen et al. 2022) and proximity

data (e.g., Yu et al. 2018), sociologists have been slow in adopting recent advances of

these models.15 On the other hand, the late adoption of stochastic blockmodels is quite

unfortunate, since aggregating the data according to the equivalence criterion retains

more relational information than doing so by clustering (Marsden 1985). Indeed, two oc-

cupations belonging to the same “cluster” might have very different connection patterns

outside its boundaries, while stochastically equivalent occupations have, by definition,

the exact same probability to be connected to all other occupations both within and

outside their class. Stochastic blockmodels and their degree-corrected variants enable

the detection of such equivalent positions in the web of worker flows, either conditional

on the row- and column-marginals as well as the diagonals of the mobility table or

unconditionally.

This is not to say that clustering is inferior to equivalence as a criterion for aggregating

mobility data nor that DCSBMs should be always preferred over community detection

algorithms. Whether occupations should be grouped based on clustering or equivalence

would depend on the concrete research question that is pursued, and, as mentioned

above, community detection algorithms tend to be more efficient than the procedures

used to estimate stochastic blockmodels. Still, many social phenomena require us to go

beyond clustering to create an adequate representation their structures. After all, the

social world is more complex than a juxtaposition of islands. Stochastic blockmodels

offer sociologists a principled way to go beyond clustering structures and, hence, one

step further toward capturing such complexities in mobility flows.
15I thank the anonymous reviewer who pointed out that Lin and Hung (2022) used stochastic block-

models as a sensitivity check in their analysis of mobility tables (see footnote 11 on page 1565). To the
best of my knowledge, this is the only application of the model to the analysis of mobility tables in the
sociology literature.
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Appendix

Variational EM Algorithm for Degree-corrected Stochastic Blockmodels

In order to motivate the VEM algorithm for DCSBMs, it is useful to start from the

original EM algorithm (Dempster et al. 1977). The EM algorithm is often introduced

as a procedure that maximizes the expected complete-data log-likelihood (e.g., Casella

and Berger 2002). Yet, to connect it with its variational variant, it helps to conceptualize

both the E- and M-step of the algorithm as procedures that maximize a lower bound of

the marginal log-likelihood.

Following Bishop (2006), we start with a general decomposition of the marginal

log-likelihood into a lower bound and a Kullback-Leibler divergence term. Let 𝜃 =

{𝛼, 𝛽, 𝛿,Ψ, 𝜋} be the model parameters and 𝑝𝜃 (𝑧 | 𝑦) the posterior distribution of the

class membership vector. Consider an arbitrary distribution 𝑞(𝑧) over Z, the set of

values that 𝑧 can assume with positive probability. Dividing both sides of the equality

𝑝𝜃 (𝑦, 𝑧) = 𝑝𝜃 (𝑧 | 𝑦)𝑝𝜃 (𝑦) by 𝑞(𝑧) and taking the logarithm of both sides, we obtain

log
[
𝑝𝜃 (𝑦, 𝑧)
𝑞(𝑧)

]
= log

[
𝑝𝜃 (𝑧 | 𝑦)
𝑞(𝑧)

]
+ log 𝑝𝜃 (𝑦). (6)

Next, multiplying both sides by 𝑞(𝑧) and summing over 𝑧 ∈ Z gives, after rearranging,

log 𝑝𝜃 (𝑦) =
∑︁
𝑧

𝑞(𝑧) log
[
𝑝𝜃 (𝑦, 𝑧)
𝑞(𝑧)

]
−

∑︁
𝑧

𝑞(𝑧) log
[
𝑝𝜃 (𝑧 | 𝑦)
𝑞(𝑧)

]
, (7)

since
∑
𝑧 𝑞(𝑧) = 1. The first term on the right-hand side of (7) can be written as

L𝜃 (𝑞) =
∑︁
𝑧

𝑞(𝑧) log 𝑝𝜃 (𝑦, 𝑧) −
∑︁
𝑧

𝑞(𝑧) log 𝑞(𝑧)

= E𝑧∼𝑞
[

log 𝑝𝜃 (𝑦, 𝑧)
]
+ 𝐻 (𝑞)

(8)

i.e., the sum of the expectation of the complete-data log-likelihood with respect to the
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distribution 𝑞 and the entropy of 𝑞, 𝐻 (𝑞) = −∑
𝑧 𝑞(𝑧) log 𝑞(𝑧). The second term in (7)

is the Kullback-Leibler divergence from 𝑞 to the posterior distribution, 𝑝𝜃 (· | 𝑦). Hence,

we might express the marginal log-likelihood as

log 𝑝𝜃 (𝑦) = L𝜃 (𝑞) + KL
(
𝑞

 𝑝𝜃 (· | 𝑦)) . (9)

It can be shown that KL(𝑃 ∥𝑄) ≥ 0 for any two discrete distributions 𝑃 and 𝑄 with

equality if and only if 𝑃(𝑧) = 𝑄(𝑧) for all 𝑧 ∈ Z (Grünwald 2007). Hence, we see that

log 𝑝𝜃 (𝑦) ≥ L𝜃 (𝑞), (10)

or, in words, that L𝜃 (𝑞) is a lower bound of the marginal log-likelihood.

Both the E-step and the M-step of the EM algorithm can be understood as procedures

that maximize the lower bound, L𝜃 (𝑧), by iterating between updating 𝑞 and 𝜃. The E-

step keeps 𝜃 fixed and finds the distribution 𝑞 that maximizes L𝜃 (𝑞). Since L𝜃 (𝑞) and

the KL-divergence term in (9) must sum to log 𝑝𝜃 (𝑦), maximizing L𝜃 (𝑞) with respect

to 𝑞 is equivalent to minimizing the KL-divergence term. Hence, the optimal choice

of 𝑞 is setting 𝑞 = 𝑝𝜃 (· | 𝑦) for which KL(𝑞 ∥𝑝𝜃 (· | 𝑦)) = 0. The M-step, then, fixes

the distribution 𝑞, and maximizes the lower bound L𝜃 (𝑞) with respect to 𝜃. Since 𝑞

and, accordingly, 𝐻 (𝑞) remains fixed in this step, this is equivalent to maximizing the

posterior expectation of the complete-data log-likelihood. Under reasonable conditions,

iterating between the E- and M-step to update 𝑞 and 𝜃 is guaranteed to find a local

maximum of the marginal log-likelihood (Wu 1983).

The main problem with applying the EM algorithm to DCSBMs is that the posterior

distribution 𝑝𝜃 (· | 𝑦) is generally intractable (Snijders and Nowicki 1997; Daudin et al.

2008). The variational EM algorithm tries to overcome this problem by approximating

the optimal but intractable distribution 𝑝𝜃 (· | 𝑦) with a tractable variational distribution.

Let 𝑞𝜉 be a family of distributions, indexed by the parameter 𝜉, which is used for the
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approximation. Substituting 𝑞𝜉 into (9), the marginal log-likelihood becomes

log 𝑝𝜃 (𝑦) = E𝑧∼𝑞 𝜉 [log 𝑝(𝑦, 𝑧)] + 𝐻 (𝑞𝜉)︸                              ︷︷                              ︸
L𝜃 (𝑞 𝜉 )

+KL
(
𝑞𝜉

 𝑝𝜃 (· | 𝑦)) , (11)

where the lower bound based on the approximate distribution, L𝜃 (𝑞𝜉), is often referred

to as the variational lower bound or evidence lower bound (ELBO).

The VEM algorithm proceeds in similar steps as the original EM algorithm. In

the variational E-step, L𝜃 (𝑞𝜉) is maximized with respect to the variational parameters

𝜉, which is equivalent to choosing the distribution 𝑞𝜉 that minimizes the KL-term in

equation (11) and, hence, offers the best approximation to the posterior distribution.16

In the M-step, the variational distribution 𝑞𝜉 is treated as fixed andL𝜃 (𝑞𝜉) is maximized

with respect to 𝜃. Notice that by choosing 𝑞𝜉 ≠ 𝑝𝜃 (· | 𝑦), the KL-divergence term in

(11) will not vanish, and the maximizer of L𝜃 (𝑞𝜉) will be an approximate value of 𝜃MLE

in finite samples. How close 𝜃VEM is to 𝜃MLE will depend on the choice of the family

𝑞𝜉 . Here, I follow Daudin et al. (2008) and Mariadassou et al. (2010) and use the fully

factorized family

𝑞𝜉 (𝑧) =
𝑁∏
𝑖=1

𝑞𝜉𝑖 (𝑧𝑖) (12)

where 𝑞𝜉𝑖 (𝑧𝑖) denotes the categorical distribution with parameter 𝜉𝑖 and where 𝜉𝑖 =

[𝜉𝑖1, 𝜉𝑖2, ..., 𝜉𝑖𝑀]⊤ is a 𝑀-dimensional probability vector satisfying the constraints

𝜉𝑖𝑘 ≥ 0, 𝑖 = 1, ..., 𝑁 and 𝑘 = 1, ..., 𝑀,
𝑀∑︁
𝑘=1

𝜉𝑖𝑘 = 1, 𝑖 = 1, ..., 𝑁.
(13)

The approach of approximating an intractable joint distributions by assuming indepen-

dence between components is called a mean-field approximation and is often used in

finite mixture models for network and similar data structures (Airoldi et al. 2008; Blei
16Of course, here “best” should be understood as the best possible approximation within the family of

distributions that are considered.
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et al. 2017; Lee and Wilkinson 2019).

For the fully factorize variational distribution in (12), the ELBO can be written as

L𝜃 (𝑞𝜉) = E𝑧∼𝑞 𝜉 [log 𝑝𝜃 (𝑦, 𝑧)] + 𝐻 (𝑞𝜉)

=

𝑁∑︁
𝑖=1

𝑁∑︁
𝑗=1
𝑗≠𝑖

𝑦𝑖 𝑗 log(𝛼𝑖𝛽 𝑗 ) +
𝑁∑︁
𝑖=1

𝑁∑︁
𝑗=1
𝑗≠𝑖

𝑀∑︁
𝑘=1

𝑀∑︁
𝑙=1

𝜉𝑖𝑘𝜉 𝑗 𝑙 (𝑦𝑖 𝑗 logΨ𝑘𝑙 − 𝛼𝑖𝛽 𝑗Ψ𝑘𝑙)

+
𝑁∑︁
𝑖=1

𝑀∑︁
𝑘=1

𝜉𝑖𝑘 log 𝜋𝑘 −
𝑁∑︁
𝑖=1

𝑀∑︁
𝑘=1

𝜉𝑖𝑘 log 𝜉𝑖𝑘 + 𝐶

(14)

where 𝐶 is a constant not depending on the parameters of the model and where the

summation in the first two terms run over all off-diagonal cells of the mobility table,

since the diagonals are “blocked out.” In the variational E-step, L𝜃 (𝑞𝜉) is maximized

with respect to 𝜉 subject to the constraints in (13). This can be done via the method of

Lagrange multipliers, leading to the consistency condition

log 𝜉𝑖𝑘 =
𝑁∑︁
𝑗=1
𝑗≠𝑖

𝑀∑︁
𝑙=1

𝜉 𝑗 𝑙 log 𝛾𝑖 𝑗 𝑘𝑙 + log 𝜋𝑘 + 𝐶𝑖 (15)

at the maximized lower bound, where

log 𝛾𝑖 𝑗 𝑘𝑙 = (𝑦𝑖 𝑗 logΨ𝑘𝑙 − 𝛼𝑖𝛽 𝑗Ψ𝑘𝑙) + (𝑦 𝑗𝑖 logΨ𝑙𝑘 − 𝛼 𝑗 𝛽𝑖Ψ𝑙𝑘 )

and 𝐶𝑖 is a constant not depending on 𝜉𝑖𝑘 . The variational E-step updates each 𝜉𝑖

by cycling through equation (15) for each occupation 𝑖 = 1, 2, ..., 𝑁 , which can be

considered as a coordinate ascent algorithm that increases L𝜃 (𝑞𝜉) until a local optimum

is reached (Bishop 2006; Blei et al. 2017).

In the M-step, 𝜉 is kept fixed and L𝜃 (𝑞𝜉) is maximized with respect to 𝜃. The

maximizer of 𝜋 has a closed-form solution

�̂�𝑘 =
1
𝑁

𝑁∑︁
𝑖=1

𝜉𝑖𝑘 . (16)
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For the rest of the parameters, 𝜂 = {𝛼, 𝛽,Ψ}, we notice that the only part of the ELBO

that depends on 𝜂 is the expectation of the complete-data log-likelihood. Further,

E𝑧∼𝑞 𝜉 [log 𝑝𝜃 (𝑦, 𝑧)] = E𝑧∼𝑞 𝜉 [log 𝑝𝜃 (𝑦 | 𝑧) + log 𝑝𝜃 (𝑧)]

=

𝑀∑︁
𝑘=1

𝑀∑︁
𝑙=1

𝑁∑︁
𝑖=1

𝑁∑︁
𝑗=1
𝑗≠𝑖

𝜉𝑖𝑘𝜉 𝑗 𝑙 log 𝑓 (𝑦𝑖 𝑗 ;𝜆𝑖 𝑗 𝑘𝑙) + 𝐾
(17)

where 𝑓 (𝑦𝑖 𝑗 ;𝜆𝑖 𝑗 𝑘𝑙) is the PMF of the Poisson distribution with parameter𝜆𝑖 𝑗 𝑘𝑙 = 𝛼𝑖𝛽 𝑗Ψ𝑘𝑙

evaluated at 𝑦𝑖 𝑗 and 𝐾 is a constant not depending on 𝜂. Hence,

argmax
𝜂

L𝜃 (𝑞𝜉) = argmax
𝜂

𝑀∑︁
𝑘=1

𝑀∑︁
𝑙=1

𝑁∑︁
𝑖=1

𝑁∑︁
𝑗=1
𝑗≠𝑖

𝜉𝑖𝑘𝜉 𝑗 𝑙
{
𝑦𝑖 𝑗 log(𝛼𝑖𝛽 𝑗Ψ𝑘𝑙) − 𝛼𝑖𝛽 𝑗Ψ𝑘𝑙 − log(𝑦𝑖 𝑗 !)

}
= argmax

𝜂

{
𝑁∑︁
𝑖=1

𝑁∑︁
𝑗=1
𝑗≠𝑖

𝑦𝑖 𝑗

[
log(𝛼𝑖𝛽 𝑗 ) + 𝜉⊤𝑖 log(Ψ)𝜉 𝑗

]
−

𝑁∑︁
𝑖=1

𝑁∑︁
𝑗=1
𝑗≠𝑖

𝛼𝑖𝛽 𝑗
(
𝜉⊤𝑖 Ψ𝜉 𝑗

) }
,

where log(Ψ) is the element-wise log-transform of the matrix Ψ. I use the the limited-

memory BFGS algorithm (Liu and Nocedal 1989) implemented in the lbfgs++ library

to maximize this function, although other numerical methods could be used as well

(Mariadassou et al. 2010).17

Initial Values

The choice of initial values for the VEM algorithm is important, since, as for other finite

mixture models, the objective function can be highly multi-modal. As the objective of

the model is to find stochastically equivalent classes after adjustments for node-degrees

and loops, a degree-discounted bibliometric symmetrization (Satuluri and Parthasarathy
17The lbfgs++ library is freely available from https://github.com/yixuan/LBFGSpp/. The

gradient of the variational lower bound can be found in the online supplement.
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2011) is used as the default method to create a symmetric version of the mobility table.

For a square matrix 𝑋 , the degree-discounted bibliometric symmetrization is given as

�̃� = 𝐷
−1/2
out 𝑋𝐷

−1/2
in 𝑋⊤𝐷−1/2

out + 𝐷
−1/2
in 𝑋⊤𝐷−1/2

out 𝑋𝐷
−1/2
in , (18)

where 𝐷in and 𝐷out are diagonal matrices containing the column- and row-sums of

𝑋—i.e., 𝐷in = diag(1⊤𝑋), 𝐷out = diag(𝑋1), where 1 is a vector of ones of compatible

length.18 After symmetrization, 𝑀 − 1 eigenvectors are extracted from the (weighted)

graph Laplacian 𝐿 = diag(1⊤ �̃�) − �̃� , starting with the eigenvector corresponding to

the second smallest eigenvalue. These vectors are, thereafter, used as inputs to a k-

means algorithm to obtain initial values for the membership vector 𝑧. The armadillo

library (Sanderson and Curtin 2016) is used for fast calculations of the eigenvectors and

clustering.
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Online Supplement

Gradient of Variational Lower-Bound
The gradient of L𝜃 (𝑞𝜉) with respect to the (logged) parameters is

𝜕L
𝜕 log𝛼𝑖

=

(
𝑁∑︁
𝑗≠𝑖

𝑦𝑖 𝑗

)
− 𝛼𝑖𝜉⊤𝑖 Ψ𝜉𝑖,

𝜕L
𝜕 log 𝛽 𝑗

=

(
𝑁∑︁
𝑖≠ 𝑗

𝑦𝑖 𝑗

)
− 𝛽 𝑗𝜉⊤𝑗 Ψ𝜉 𝑗 ,

𝜕L
𝜕 logΨ𝑘𝑙

=

𝑁∑︁
𝑖=1

𝑁∑︁
𝑗≠𝑖

𝜉𝑖𝑘𝜉 𝑗 𝑙𝑦𝑖 𝑗 − Ψ𝑘𝑙

𝑁∑︁
𝑖=1

𝑁∑︁
𝑗≠𝑖

𝜉𝑖𝑘𝜉 𝑗 𝑙𝜇𝑖 𝑗

(19)
where 𝜉𝑖 =

∑
𝑗≠𝑖 𝛽 𝑗𝜉 𝑗 and 𝜉 𝑗 =

∑
𝑖≠ 𝑗 𝛼𝑖𝜉𝑖.
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Figure A1: Design of Simulation Study

Symbol Interpretation
𝑁 Number of occupations
𝑀 Number of classes
𝑦𝑖 𝑗 Worker flow from occupation 𝑖 to occupation 𝑗
𝛼𝑖 row (out-flow) effect of occupation 𝑖
𝛽 𝑗 column (in-flow) effect of occupation 𝑗
Ψ image matrix
𝜋 class proportions
𝑧𝑖 class membership of occupation 𝑖
𝜈 Parameter governing the skewness of class sizes in simulation (smaller values leading to

more skewed class sizes)
𝛾 Parameter governing strength of block signal in simulation (larger values leading to stronger

signal of the block-structure)
type Type of the simulated between-class mobility pattern (see Figure 2)

Simulation Design
1: for 𝑁 ∈ {50, 100, 500} do
2:
3: for 𝑖 = 1, ..., 𝑁 do
4: log 𝛼𝑖 , log 𝛽𝑖 ∼ Normal(0, 1)
5: end for
6:
7: if 𝑁 = 500 thenM = {2, 3, 5, 10} elseM = {2, 3, 5}
8:
9: for 𝑀 ∈ M, 𝜈 ∈ {0.5, 0.75, 1}, type ∈ {symm, cycl, hier}, 𝛾 ∈ {1, 2, 3} do

10:
11: for 𝑘 = 1, ..., 𝑀 do
12: �̃�𝑘 ← 𝜈𝑘

13: end for
14:
15: 𝜋 ← �̃�/∑𝑘 �̃�𝑘 .
16: Ψ← Ψtype (𝛾)
17:
18: for s = 1, ..., 25 do
19:
20: for 𝑖 = 1, ..., 𝑁 do
21: 𝑧𝑖 ∼ Categorical(𝜋 )
22: end for
23:
24: for 𝑖 = 1, ..., 𝑁 do
25: for 𝑗 ≠ 𝑖 do
26: 𝜆𝑖 𝑗 ← 𝛼𝑖𝛽 𝑗Ψ𝑧𝑖 𝑧 𝑗

27: 𝑦𝑖 𝑗 ∼ Poisson(𝜆𝑖 𝑗 )
28: end for
29: end for
30:
31: for 𝑟 = 1, ..., 20 do
32: Generate initial values, 𝜃 (𝑟 )inits
33: 𝜃 (𝑟 ) ← VEM(𝑦 (𝑠) , 𝜃 (𝑟 )inits )
34: end for
35:
36: 𝜃 ← argmax𝑟 ELBO(𝜃 (𝑟 ) )
37: �̂� ← argmax𝑥 𝑝𝜃 (𝑥 | 𝑦)
38: Compare �̂� and 𝑧 (via Rand Index or NMI)
39:
40: end for
41: end for
42: end for

Note: Diagonal entries of 𝑦 as well as their corresponding parameters, 𝛿I(𝑖= 𝑗)
𝑖 𝑗

are not simulated, since the model is fitted only to
the off-diagonal elements of 𝑦.
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Figure A2: Time to Fit the DCSBM to Simulated Data
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Notes: The box show the first quartile, median, and third quartile of the distribution. The lines on top of
each box extends to the largest value no further than 1.5 * IQR from the third quartile. The lines extending
from the bottom of each box are defined analogously. All models were fitted using on a machine equipped
with an AMD EPYC 2.0GHz CPU using a single thread.
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Figure A3: Normalized Mutual Information of “True” and MAP Estimate of Class-
membership Vector, 𝑧
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Notes: Points are jittered horizontally to show the distribution of the normalized mutual information.
Thick black dot represents the median of the distribution. Simulation runs that resulted in no variation in
the block-memberships are excluded from the figure.
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Table A1: Goodness-of-fit Statistics of Quasi-independence Model fitted to Classes
Identified by DCSBM Fitted to the Mobility Table in Figure 6

𝐺2 df p Collapsed Rows/Cols
132.63 83 0.00 1, 2, 3, 4
112.70 57 0.00 5, 6, 7
105.32 29 0.00 8, 9
220.05 83 0.00 10, 11, 12, 13
84.62 29 0.00 14, 15
90.36 29 0.00 16, 17

Notes: 𝐺2, 𝑑𝑓 , and 𝑝 are, respectively, the likelihood ratio chi-squared statistic, the residual degrees of
freedom, and the associated 𝑝-value of the goodness-of-fit test when a quasi-independence model is fitted
to only those rows and columns indicated in the fourth column of the table.
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Table A2: Goodness-of-fit Statistics of Quasi-independence Models Fitted to All Pairs
of Rows/Columns of Mobility Table in Figure 7b

𝐺2 df p Collapsed Rows/Cols
9.487 11 0.577 1, 2
40.987 11 0.000 1, 3
111.705 11 0.000 1, 4
89.552 11 0.000 1, 5
173.881 11 0.000 1, 6
205.871 11 0.000 1, 7
210.260 11 0.000 1, 8
27.906 11 0.003 2, 3
107.424 11 0.000 2, 4
83.893 11 0.000 2, 5
198.461 11 0.000 2, 6
249.532 11 0.000 2, 7
237.010 11 0.000 2, 8
65.155 11 0.000 3, 4
40.515 11 0.000 3, 5
208.683 11 0.000 3, 6
198.040 11 0.000 3, 7
230.224 11 0.000 3, 8
7.869 11 0.725 4, 5
75.589 11 0.000 4, 6
118.401 11 0.000 4, 7
112.112 11 0.000 4, 8
37.968 11 0.000 5, 6
78.000 11 0.000 5, 7
72.432 11 0.000 5, 8
39.475 11 0.000 6, 7
50.267 11 0.000 6, 8
9.028 11 0.619 7, 8

Notes: The numbers in the “Collapsed Rows/Cols” column indicate the row/column index of the occupa-
tional group. Hence, 5 corresponds to occupational group 5a in Goodman’s table, 6 corresponds to 5b, 7
corresponds to 6, and 8 corresponds to 7.
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Table A3: Goodness-of-fit Statistics of Quasi-independence Models Fitted to All Pairs
of Rows/Columns of Mobility Table in Figure 6

G2 df p Collapsed Rows/Cols
42.810 29 0.047 1, 2
45.254 29 0.028 1, 3
44.205 29 0.035 1, 4
89.807 29 0.000 1, 5
85.372 29 0.000 1, 6
74.602 29 0.000 1, 7
184.881 29 0.000 1, 8
167.807 29 0.000 1, 9
228.712 29 0.000 1, 10
235.165 29 0.000 1, 11
278.213 29 0.000 1, 12
267.653 29 0.000 1, 13
300.900 29 0.000 1, 14
304.321 29 0.000 1, 15
424.766 29 0.000 1, 16
539.620 29 0.000 1, 17
52.901 29 0.004 2, 3
54.204 29 0.003 2, 4
63.220 29 0.000 2, 5
187.788 29 0.000 2, 6
102.297 29 0.000 2, 7
300.205 29 0.000 2, 8
265.603 29 0.000 2, 9
279.825 29 0.000 2, 10
332.191 29 0.000 2, 11
558.993 29 0.000 2, 12
662.259 29 0.000 2, 13
504.941 29 0.000 2, 14
553.460 29 0.000 2, 15
633.100 29 0.000 2, 16
2062.742 29 0.000 2, 17
17.622 29 0.952 3, 4
71.771 29 0.000 3, 5
131.338 29 0.000 3, 6
84.537 29 0.000 3, 7
333.334 29 0.000 3, 8
278.782 29 0.000 3, 9
363.909 29 0.000 3, 10
391.730 29 0.000 3, 11
547.887 29 0.000 3, 12
542.482 29 0.000 3, 13
461.211 29 0.000 3, 14
570.104 29 0.000 3, 15
1070.595 29 0.000 3, 16
1266.517 29 0.000 3, 17
69.117 29 0.000 4, 5
146.958 29 0.000 4, 6
97.312 29 0.000 4, 7
264.401 29 0.000 4, 8
248.793 29 0.000 4, 9
285.758 29 0.000 4, 10
311.831 29 0.000 4, 11
424.647 29 0.000 4, 12
458.017 29 0.000 4, 13
458.092 29 0.000 4, 14
489.164 29 0.000 4, 15
543.151 29 0.000 4, 16
1131.460 29 0.000 4, 17
71.233 29 0.000 5, 6
43.789 29 0.038 5, 7
150.404 29 0.000 5, 8
123.555 29 0.000 5, 9
167.220 29 0.000 5, 10
152.448 29 0.000 5, 11
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219.799 29 0.000 5, 12
219.814 29 0.000 5, 13
217.523 29 0.000 5, 14
260.687 29 0.000 5, 15
752.159 29 0.000 5, 16
390.521 29 0.000 5, 17
51.377 29 0.006 6, 7
111.719 29 0.000 6, 8
97.974 29 0.000 6, 9
198.223 29 0.000 6, 10
167.151 29 0.000 6, 11
302.746 29 0.000 6, 12
323.047 29 0.000 6, 13
316.291 29 0.000 6, 14
356.467 29 0.000 6, 15
600.733 29 0.000 6, 16
1785.062 29 0.000 6, 17
95.976 29 0.000 7, 8
61.443 29 0.000 7, 9
119.056 29 0.000 7, 10
114.715 29 0.000 7, 11
199.194 29 0.000 7, 12
207.750 29 0.000 7, 13
240.366 29 0.000 7, 14
215.193 29 0.000 7, 15
358.948 29 0.000 7, 16
1066.349 29 0.000 7, 17
105.316 29 0.000 8, 9
147.583 29 0.000 8, 10
79.152 29 0.000 8, 11
131.664 29 0.000 8, 12
77.743 29 0.000 8, 13
130.461 29 0.000 8, 14
178.860 29 0.000 8, 15
788.194 29 0.000 8, 16
956.680 29 0.000 8, 17
61.758 29 0.000 9, 10
48.759 29 0.012 9, 11
88.994 29 0.000 9, 12
129.399 29 0.000 9, 13
152.266 29 0.000 9, 14
142.238 29 0.000 9, 15
683.437 29 0.000 9, 16
1023.436 29 0.000 9, 17
59.819 29 0.001 10, 11
45.239 29 0.028 10, 12
103.083 29 0.000 10, 13
107.906 29 0.000 10, 14
65.029 29 0.000 10, 15
484.023 29 0.000 10, 16
534.483 29 0.000 10, 17
55.406 29 0.002 11, 12
59.472 29 0.001 11, 13
82.302 29 0.000 11, 14
89.130 29 0.000 11, 15
537.793 29 0.000 11, 16
873.158 29 0.000 11, 17
109.931 29 0.000 12, 13
105.741 29 0.000 12, 14
48.062 29 0.014 12, 15
569.016 29 0.000 12, 16
1118.209 29 0.000 12, 17
48.029 29 0.015 13, 14
115.049 29 0.000 13, 15
736.901 29 0.000 13, 16
1315.631 29 0.000 13, 17
84.617 29 0.000 14, 15
202.540 29 0.000 14, 16
661.063 29 0.000 14, 17
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297.277 29 0.000 15, 16
888.498 29 0.000 15, 17
90.358 29 0.000 16, 17

Notes: The numbers in the “Collapsed Rows/Cols” column indicate the row/column index of the
occupational group.
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Table A4: Bayesian Information Criteria for Different Models Fitted to Mobility Table
in Figure 6

No. of Classes Log-likelihood df BIC
DCSBM 6 -1027.022 75 2479.027
Breiger 8 -1026.113 97 2601.870
Goodman 16 -780.711 260 3034.693
Quasi-Independence 1 -2783.245 50 5849.812

Notes: The Model named Goodman collapses “Managers” and “Sales, Other” into the same class, while
leaving all other occupations as their own class. Notice that the statistics in the row named “Breiger” are
different from those reported in Breiger (1981). This is because (1) only one set of row- and column-
effects are fitted for all models and (2) the statistics reported in the table include the diagonals of the
table as well as the parameters fitted to them. For the BIC statistic corresponding to Breiger’s model as
formulated in Breiger (1981) and fitted to only the off-diagonal cells of the table, see footnote 10 in the
main text.
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Table A5: Community Detection Algorithms Applied to Mobility Table Analyzed in
Goodman (1981)

Occupation Infomap Walktrap Edge Betweenness Louvain Leiden
1. Professional and high administrative 1 2 1 1 1
2. Managerial and executive 1 2 1 1 1
3. Other nonmanual (high grade) 1 1 1 1 1
4. Other nonmanual (low grade) 1 1 1 2 1
5a. Routine grades of nonmanual 1 1 1 2 1
5b. Skilled manual 1 1 1 2 1
6. Semiskilled manual 1 1 1 2 1
7. Unskilled manual 1 1 1 2 1

Notes: Numbers are used to indicate clusters but have no substantive meaning. For the Edge Betweenness,
Louvain, and Leiden algorithm, which all maximize modularity, a symmetrized version of the mobility
table was used in the analysis (see endnote 13).
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